

版权信息
书名：测试驱动开发的艺术

作者：Lasse Koskela

译者：李贝

ISBN：978-7-115-23836-8

本书由北京图灵文化发展有限公司发行数字版。版权所有，侵权必究。

您购买的图灵电子书仅供您个人使用，未经授权，不得以任何方式复制和传播本书内容。

我们愿意相信读者具有这样的良知和觉悟，与我们共同保护知识产权。

如果购买者有侵权行为，我们可能对该用户实施包括但不限于关闭该帐号等维权措施，并可能追究法律责任。

目录
版权声明
前言
关于本书
第一部分　TDD入门
第1章　综述
1.1　挑战：用正确的方法解决正确的问题
1.2　解决方案：测试驱动
1.3　正确地做事：TDD
1.4　做正确的事：ATDD
1.5　TDD工具
1.6　小结
第2章　TDD入门
2.1　从需求到测试
2.2　选择第一个测试
2.3　广度优先，深度优先
2.4　别忘了重构
2.5　添加错误处理
2.6　无穷尽的测试
2.7　小结
第3章　小步重构
3.1　探寻解决方案
3.2　以受控的方式修改设计
3.3　进一步延伸新设计
3.4　小结
第4章　TDD的概念与模式
4.1　如何编写及通过测试
4.2　重要的测试概念
4.3　近处观察测试替身
4.4　提高设计的可测试性的准则
4.5　单元测试模式
4.6　在遗留代码基础上工作
4.7　小结
第二部分　针对特定技术应用TDD
第5章　测试驱动Web组件
5.1　在60秒内介绍Web应用中的MVC
5.2　控制器
5.3　用测试先行的方法构建视图
5.4　在基于控件的Web框架基础上TDD
5.5　小结
第6章　测试驱动数据访问
6.1　探索问题领域
6.2　用单元测试驱动数据访问
6.3　编码前写集成测试
6.4　集成测试实战
6.5　为集成测试填充数据
6.6　使用单元测试还是集成测试
6.7　文件系统访问
6.8　小结
第7章　测试驱动不可预测功能
7.1　测试驱动时间相关功能
7.2　测试驱动多线程代码
7.3　标准同步对象
7.4　小结
第8章　测试驱动Swing代码
8.1　Swing UI中该测试什么
8.2　可测试UI代码的模式
8.3　测试视图控件的工具
8.4　测试驱动视图组件
8.5　小结
第三部分　基于ATDD构建产品
第9章　解析验收测试驱动开发
9.1　用户故事介绍
9.2　验收测试
9.3　理解过程
9.4　作为团队活动的ATDD
9.5　ATDD的好处
9.6　我们究竟要测试什么
9.7　工具概览
9.8　小结
第10章　用Fit创建验收测试
10.1　Fit是什么
10.2　三个内建夹具
10.3　FitLibrary对内建夹具的扩展
10.4　执行Fit测试
10.5　小结
第11章　执行验收测试的策略
11.1　验收测试该检测什么
11.2　实现方式
11.3　技术相关考虑
11.4　常见问题的处理技巧
11.5　小结
第12章　TDD应用
12.1　成功采用TDD的必要条件
12.2　让其他人参与进来
12.3　如何应对阻力
12.4　如何推进变革
12.5　小结
附录A　JUnit 4简明教程
附录B　JUnit 3.8简明教程
附录C　EasyMock简明教程
附录D　通过Ant运行测试
相关资源
	　　　

版权声明
Original English language edition, entitled Test Driven: Practical TDD and Acceptance TDD for Java Developers by Lasse Koskela, published by Manning Publications Co., 209 Bruce Park Avenue, Greenwich, CT 06830. Copyright © 2008 by Manning Publications Co.

Simplified Chinese-language edition copyright © 2010 by Posts & Telecom Press. All rights reserved.

本书中文简体字版由Manning Publications Co.授权人民邮电出版社独家出版。未经出版者书面许可，不得以任何方式复制或抄袭本书内容。

版权所有，侵权必究。

前言
七年前，正值全球IT产业繁荣时期，大大小小的软件公司都发了疯似地想赶上下一波IPO，招聘市场火爆异常。我也在此时投身到繁荣的新媒体产业，开始了我的编程生涯。从此我没日没夜地鼓捣各种代码段，配置服务器，往生产系统里上传PHP脚本，似乎一切尽在掌握。

一个九月的雨夜，又是加班到很晚，突然间我的心脏似乎停止了跳动：哎呀！我刚才做了什么？我是否删掉了生产数据库里的所有数据？好像是的！看来我只有卷铺盖走人了。我怎么才能把数据找回来呢？刚才还以为只是测试用的数据库呢！这种悲剧怎么能发生在我头上？然而，确实发生了。

第二天我没有被炒鱿鱼，主要原因是，看来客户对我删掉的数据并不太在意。而且，看来别的人也都干过类似的蠢事——他们安慰我说：大家都可能犯错。我得到一个教训，那个该死的夜晚也标志着我开始追求一种负责任的、可靠的软件开发态度。

几年以后，我换了家国际性咨询公司工作，为其他大公司开发应用和后台系统。在短短几年的职业生涯里我学到了不少东西，这得归功于我以前趴在电脑前熬夜的努力，而新工作无疑是我磨炼实战技艺的好机会。我又一次认为我已经对于软件开发行当熟门熟路了。可是我又错了，显然我比自己想象的要知道得少。我几乎每天都能学到重要的新知识。

我最重大的发现改变了我对软件开发的认识，极限编程（XP）给了我全新的视角，让我知道什么才是正确的软件开发方法。在我看来，XP把我过去行之有效的披荆斩棘式的编程方式与一种系统的、训练有素的工作方法结合在一起。XP项目除了能让开发团队更接近客户之外，最打动我的就是测试驱动开发（TDD）了。我以前认为编程和单元测试是两个分离的活动，现在“编码之前先写测试”这样一个简单的理念完全颠覆了我的旧思想。

TDD绝非闲庭信步那样轻松。我时刻提醒自己要先写测试，一开始能做到，可是只过了半个小时，我就忘了遵守，还没有测试就在修改代码。随着时光流逝，我越来越能够坚持测试先行的编程方法，甚至一整天都不会落入往日的陋习中。接着我会被一段代码难住，凭我的能力我无法征服它。再往后，我能理解应该怎么做，但我的手法还不够用。再后来，我不知道如何能四两拔千斤地巧妙解题，却又往往不愿意愚公移山般地用笨办法尝试。年复一年，我学会了越来越多的技巧，掌握了越来越多的工具，终于获得了现在的功力。

我写此书的目的是让诸君不必像我以前那样笨拙地克服种种困难，你们有此书在手可以轻松地前行。对我而言，学会了测试先行，深刻地影响了我工作的方法和对编程的认识，正如敏捷方法改变了我对软件开发的认识。我希望你们也能学会测试先行。

关于本书
为了更好更快地开发软件，软件开发人员经过实践和思考，提出了测试驱动开发的方法。本书作者作为软件开发人员，希望降低其他人学习TDD的难度。鉴于刚接触TDD的开发人员最头疼的是一些技术性问题，本书主要采用了“手把手”的教学方式。不仅会通过动手做例子来解释TDD，而且还将用几章的篇幅专门讲解如何为通常认为难于测试的技术来编写单元测试。只有动手实践才能收到最佳的学习效果，而本书可以在你的探索之旅中充当一部导航仪。

本书读者对象

本书面向各层次的Java程序员，特别是希望提高效率和编码质量的人。测试驱动开发会为你提供一个框架，让你能增量地构建软件，借以释放你的潜能。不管你是在开发导弹控制系统，还是在创造下一个YouTube，采用TDD都不会让你失望。

本书的第二类读者不一定对TDD感兴趣，但作为Java程序员，他们想在测试方面寻求一些帮助。测试驱动开发主要是一种设计和开发技术，但编写单元测试却是TDD中的一项基本工作。本书同样能为这一类读者提供纯粹编写测试的帮助——我们介绍了为很多（所谓的）难于测试的技术，如访问数据的代码、并行程序，以及用户界面代码编写测试的方法。

不管你是想做好工作，还是想自己提升，本书都能助你一臂之力。

路线图

本书涵盖了很多背景和基础知识。全书分为三大部分，关注不同的主题。

第一部分从最基础的内容讲起，讨论测试驱动开发和验收测试驱动开发。

第1章先提出问题（即要面对的挑战），然后解释了TDD和ATDD给出的有效解决方案，包括测试先行编程、渐进设计、测试自动化和果断重构。

第2章开始动手实践，为深入理解TDD展示了一个例子：以测试驱动方法编写的模板引擎。这一章还将讨论如何管理测试和选择下一个测试。

第3章以第2章为起点，为模板引擎引入了一些设计变更，从一个Spike开始，然后再以可控、严格的方式来修改模板引擎。

第4章回头再讲述策略，从选择测试到通过测试。这一章会讨论一些基本的测试概念，如夹具、测试替身，还会讨论基于状态和基于交互的测试有什么区别。在说明了如何创建可测试设计的几条准则之后，这一章还介绍了几个重要的测试模式以及如何以测试先行的方式测试遗留代码。

第二部分同样侧重于动手实践，逐一讲解了如何对那些以往认为不好测试的技术应用TDD。学习完第二部分，你就明白过去的认识有多么可笑。

第5章先从Web开发讲起。学习如何对使用Servlet和Spring Controller生成的请求/响应式的Web层进行测试驱动开发，以及测试驱动由JSP和Apache Velocity模板构建的表现层。这一章最后还介绍了借助基于组件的框架对Web应用程序进行测试驱动的开发。

第6章探讨如何测试驱动Web组件背后的数据访问层。将分别介绍基于原始的JDBC、Spring Framework的Jdbc Template API和事实上的ORM工具Hibernate来测试驱动数据访问对象。另外，还将讨论在单元测试中处理数据库问题的方法和集成测试。最后，展示了一些有关文件系统的技巧。

第7章探索了新的未知领域：不确定行为。在简单介绍了与时间相关的几种选择后，首先转向多线程，探讨了几个能够测试的方面，还讨论了线程安全、阻塞操作、启动和停止线程及异步执行。这一章最后讲解Java 5中新增的java、util、concurrent中的同步对象。

第8章讨论界面，即Java Swing应用程序的界面。首先，也是从测试驱动的UI代码该测试哪些方面入手。然后，介绍三个有用的设计模式和两个开源工作（Jemmy和Abbot），它们可以简化对Swing组件进行单元测试的工作。这一章（也是第二部分）最后提供了一个例子——测试驱动定制Swing组件的界面和行为。

第三部分调整步调，从讨论具体的测试驱动对象和类，上升到基于验收测试驱动的测试先行的方式，构建完整的系统。

第9章讨论用于需求管理的用户故事和验收测试的基本概念，之后，解释ATDD的过程和对团队的需求，以及基于ATDD开发软件的好处。这一章最后讨论验收测试时应说明系统的哪些方面和一些工具。

第10章介绍流行的验收测试工具Fit。首先讨论如何使用Fit与用户协作，即先以表列格式列出验收测试，再将其转换成Fit格式。然后讨论将表列测试与系统关联起来的技术，涉及三个Fit内置的标准夹具和FitLibrary提供的几个实用工具。最后，讨论如何在命令行中和以Ant构建方式来运行Fit测试。

第11章探讨如何实现与工具无关的验收测试。在介绍了几种将测试与系统连接起来的方法后，讨论了这些技术的优缺点。最后还与读者分享了提高验收测试效率和应对复杂性的技巧。

第12章讨论了如何成功地推行TDD。开头探讨了实现长久改变的先决条件，事关我们自己和同事。接着关注反对意见：怎样识别和处理反对意见。最后给出了很多确保推行成功的建议。

考虑到单元测试在测试驱动开发中的重要性，本书附录还为读者准备了相关的三个工具的简明教程。附录A和附录B分别展示了JUnit单元测试框架4.3和3.8版本的语法。附录C也差不多，它展示了EasyMock（用于生成测试替身的动态模拟对象框架）的语法。

能在自己喜爱的IDE中编写测试驱动代码的确很棒，但我们还希望把测试的部分也融入自动构建的过程中。这正是添加附录D的原因。附录D提供了Java开发人员使用的标准构建工具——Apdche Ant中运行单元测试的简明教程。

代码约定

本书代码主要有Java代码、标记代码和输出结果。对于大段代码，我们将配以标题。而小段代码则直接与正文混排在一起。无论是在哪里，代码都以等宽字体印刷，以区别于正文。在第二部分，经常会引用代码清单中的标识符和元素，这些也都使用等宽字体。另外，特别长的代码清单中还会有一些编号的注解，以便于正文中引用说明。

下载代码

可以从Manning公司网站下载本书全部示例代码，地址为：http://www.manning.com/koskela。其中包括本书中出现和省略的代码。

下载的文件中包含Maven 2 POM文件及使用Maven（http://maven.apache.org）编译和运行示例的说明。请注意，下载的文件中不包含依赖文件。在第一次运行Maven时，它会在能上网的情况下帮你下载必需的依赖。此后，即使断开网络连接也可以在本地运行示例了。

我们强烈建议读者安装一个IDE。本书中的示例代码是Eclipse项目的格式，因此需下载并安装Eclipse（http://www.eclipse.org）的最新或最高版本。当然，IntelliJ IDEA（http://www.jetbrains.com/idea）和NetBeans（http://www.netbeans.org）也不错，只不过你得自己配置一下项目。

在线资料

第12章本来还有一个主题，讨论测试驱动企业级JavaBean，但未包含在本书中。我们把这个有40多页篇幅的内容放在了网上，其中对开发人员给出了相关的详细建议。

网上这一章的内容涵盖用来封装业务逻辑的会话bean、面向持久性的实体bean、异步消息驱动bean和Timer API。

虽然我们致力于介绍最新的EJB 3.0规范，但我们给出的建议实际上同时适用于3.0及2.x AIP。这样做的原因是很多遗留系统仍在使用EJB 2.x规范。

可以在如下地址下载这一章：http://www.manning.com/kosketa。

深入学习

通过本书可以掌握与测试驱动开发有关的很多知识，但这些恐怕还不能满足你的需求。好在，Manning提供了网上论坛，让读者可以与其出版图书的作者在线沟通。当然也包括本书作者在内。访问http://www.manning-sandbox.com/forum.jspa?forumID=306，即可与本书作者Lasse交流。

关于测试驱动开发这种技术或方法，很难用一本书涵盖其方方面面。因为TDD还在发展，而且针对不同领域编写测试往往有很大差别。书中总会有一些应该收录但没有收录的内容。为此，读者还应该知道如何寻求帮助。我们推荐专门讨论TDD及相关问题的Yahoo!论坛testdrivendevelopment。如果有着急的问题不知问谁才好，就在这个邮件列表中提问吧！

如果Yahoo！论坛还不能满足你的需求，你还可以订阅http://www.testdriven.com，这是TDD的门户网站。这个网站会推荐一些相关的文章、博客和工具。当然，行业内有关敏捷方法的一些会议也经常会以TDD为主题，遇到这样的活动，不妨参加一下。

我们约好了，在TDD社区再见！

作者在线

买了这本书之后，读者就可访问Manning公司的论坛，发表对本书的评论，提出技术问题并获得作者和其他用户的帮助。要访问和订阅论坛，请访问http://www.manning.com/koskela。相应页面会给出注册之后如何使用论坛，如何寻求帮助，以及论坛版块划分的信息。

Manning提供这个论坛的初衷就是让分散的读者能有机会聚到一起，与作者进行互动交流。但这并不表示作者有义务在论坛中发言，作者对相应图书论坛的贡献都是自愿的（而且没有物质回报）。为此，我们建议读者在论坛中多提一些有挑战性的问题，免得他们失去动力。

在拿到本书时，上面提到的作者在线论坛就已经开通并可以访问了。

关于封面插图

本书封面上的插图名为Franc Comtois，他是一位法国东北部小镇勃艮第省Free郡的居民。勃艮第以前一直是一个独立的地区，直到17世纪才并入法国版图。该地区有自己独特的传统和语言，这种名为“弗朗什—孔泰”的语言如今还在使用。

本书的插图取自一本1796年出版的法国游记——Encyclopedie des Voyages，作者为J.G.St.Saveur。在当时，旅游业才刚刚盛行，像这本书这样的旅游向导非常流行，无论是观光客还是足不出户的“神游旅行者”，这本书都能为他们了解法国以及世界各地人们的生活提供帮助。

Encyclopedie des Voyages一书中的插图生动展示了200年以前世界各地的城镇和地区之间文化的差异。相隔仅几十公里远的人们的服饰风格也不一样，通过服饰风格就能辨认出对方来自哪个地区。有了这本书，我们就可以体会到那个时代的人们之间的巨大文化差异，体会到那么多富有浓郁地方特色的服饰文化。如今，这一切都逐渐消失了。现在已经很难通过服饰来区分不同地区的居民了。也许我们用文化多样性换来了更加多样化的个人生活，也是更快节奏的科技生活。

当所有的计算机书籍都变得千篇一律的时候，Manning出版社则通过体现两个世纪以前丰富多彩的各地生活的图片作为封面插图，以这样的方式赞美计算机行业中的独特性和主动性。

第一部分　TDD入门
这一部分是TDD（Test-Driven Development）入门，引领读者体验测试驱动的艺术。第1章来认识TDD和它的延伸概念——验收测试驱动开发（Acceptance TDD，ATDD），我们从最基本的知识入手，对这两种技术先有一个大概的了解。第2章进入实际动手环节，将通过修改和运行实际代码深入体验测试先行的好处。第3章将更进一步，向读者展示大规模重构的例子，借以看看设计将会有多么显著的变化。

几年来，通过向一批批的程序员讲授TDD，我体会到实践是最好的老师。在学习了第2章和第3章并亲手实现功能完善的模板引擎之后，就可以接触一些重量级的技术了。第4章介绍了运用TDD思想的一些技巧和方法，包括如何选择下一个测试并使其通过。此外，必要时还将讨论相关的设计原则和测试工具。

本部分内容

	第1章　综述

	第2章　TDD入门

	第3章　小步重构

	第4章　TDD的概念与模式

第1章　综述

 我能忍受暴力，但施暴的理由却让我无法容忍。

 ——奥斯卡·王尔德

测试驱动开发（Test-Driven Development，TDD1），用一句话讲，就是“写代码只为修复失败了的测试”。我们先写一个测试，然后再写代码让测试通过。当我们在当前结构中找出最佳设计时，由于有足够的测试做保障，我们可以放心地改动现有设计而不必担心破坏已完成的功能。使用这种开发方法，我们可以让设计更加优良，能编写出可测试的代码，同时还能避免在不切实际的假设基础上过度地设计系统。要得到这些好处，只需不断添加可执行测试，一步步地驱动设计，从而最终实现整个系统。

1 缩写TDD有时也代表测试驱动设计（Test-Driven Design）。有人把TDD称为用测试先行编程（Test-First Programming），只不过叫法有区别而已。

这本书就是讲如何实行这每个小步骤的。在后面的章节中，我们将会学到TDD的本质以及玄妙之处，学到如何利用TDD开发普通Java应用程序及企业级Java应用程序，以及如何用ATDD（Acceptance TDD，验收测试驱动开发，测试驱动开发核心理念的一个扩展）来驱动整个开发过程。在用测试驱动开发实现某个具体功能之前，我们将会首先编写功能测试或验收测试，从系统功能角度驱动开发过程。

TDD其实并不是一个新概念。很久以前，不少开发人员就认为编写测试不仅仅是为了验证系统正确性了。至今你还可以从他们那里听到这个故事：从那时候起，我们写代码之前都会先写测试……。而现在，这种开发方法有了自己的名字——TDD。本书的大部分内容都是关于“如何测试驱动”以及“测试驱动什么”的。这些知识可以被用到各种日常软件开发任务中。

不过，相对于主流开发方法，TDD仍然很新。就像今天的日常用品曾经都是十足的奢侈品一样，新的开发或设计方法，通常都是只有资深的开发人员才能拥有的高级货，而在很多年以后，等这些先驱证明了新方法确实有效，这种方法才会被广泛接受，成为开发必备技能。

我相信TDD会逐渐地变成主流开发方法，而且我认为，TDD已经开始变为主流开发方法了。希望本书能够推动这个过程。

在本书的开始部分，我们会先讨论现有的开发方法在开发软件过程中遇到的挑战。一旦对现存问题有了基本共识，我们将着手讨论如何用TDD或ATDD解决这些问题，同时也会学着使用一些支持此开发方法的工具。

1.1　挑战：用正确的方法解决正确的问题
开发软件的目的是为协助组织的经营运作。作为一个专业的软件开发人员，我们的主要任务是向客户交付一个能够真正帮助他们提高工作效率并减少运作成本的系统。

回顾我多年的专业软件开发经验，参阅几十年来软件开发的文献记载，再看看整个世界范围内的技术人员对于开发方法的争论，我们不难看出很多开发组织本应向他们的客户交付更好的软件。换言之，我们现在交付的软件可不怎么好用。就算这些软件能够正常的工作，它们也没有真正解决客户的问题。从本质上讲，我们写出的代码并没有满足客户的真正需求。

接下来，我们来看看为什么“糟糕的代码质量”和“不能满足客户日益变化的需求”会妨碍我们给客户交付足够好用的系统。

1.1.1　糟糕的代码质量

虽然软件开发行业已经发展了很多年，但是开发出软件的质量依旧存在问题。近些年市场越来越注重软件的及时上市，对软件产品的需求量越来越大，同时很多的新技术也不断涌现。在这种情形下，软件行业将不可避免地继续面临质量问题。

这些质量问题主要表现在两个方面：高缺陷率和低可维护性。

	在缺陷的泥潭中挣扎

缺陷会带来很多额外的开销，因为它会导致软件不稳定，行为不可预测，或者完全不能使用。缺陷减少了软件本身的价值，有时甚至使软件造成的破坏远大于创造出的价值。

测试可以解决这些问题——我们仔细地检查软件是否像期望的那样工作，同时也试着通过某种方式检测其是否稳定。测试在软件开发中的重要性是毋庸置疑的，但是传统的测试方法只会在整个软件开发完毕并且代码“冻结”后才进行，而且会耗费很长时间。这种测试方法有很大的改进空间。例如，在测试阶段修复一个缺陷的成本，通常是在编码阶段就修复这个缺陷成本的两倍或者更多。有缺陷的软件是不能交付的。我们在寻找并修复缺陷上用的时间越多，开销越大，我们开发软件的能力也越低。

软件缺陷通常是由低质量的代码引起的，要维护这些代码简直就是噩梦，而想对其进行进一步开发也会举步维艰，代价高昂。

	维护困难，开发缓慢

好的代码有很多优点：整体设计优秀，清楚地划分出了各部分之间的功能和责任，并且没有重复。而糟糕的代码可不是这样，成天和这种代码打交道简直就是噩梦。这些代码很难读懂，修改也很困难，因此工作效率会很低。改这里，还会莫名其妙地破坏掉那里的功能。重复的代码使修复缺陷也变得不容易，改完一处，还要找出其他所有重复的代码，挨个修正同样的缺陷才算完。糟糕的代码带来的问题还远不止这些。

“我不想碰它，那任务永远不可能完成，如果做了，天知道会破坏掉其他什么功能。”这是软件业需要解决的一个很现实的问题。想修改或者添加新功能时，应该是基于现有系统继续开发，而不是重写，这就是可维护性的重要之处。有良好的可维护性，我们才能及时应对迅速变化的业务需求。如果代码的维护性差，那么我们行动和响应的速度会变慢，按时交付的压力会变大，这会促使开发人员写出质量更差的代码。如果想持续地交付软件，我们必须打破这种恶性循环。

这些问题已经够糟糕了，但是还有其他问题：我们交付的软件通常都没有完全满足客户的需求。

1.1.2　不能满足客户需求

没人愿意花钱当冤大头，但软件行业的客户就经常被逼着这么做。在软件开发前期，客户和开发人员互相交换规格文档，然后开发工作就此开始。十二个月以后客户拿到系统，才发现这并不是自己当初想要的。更不用说在当前激烈的商战下，客户的业务需求和十二个月以前常常大相径庭。

由于交付的系统经常不能真正满足客户需求，软件开发行业一直在尝试用新的方法开发软件。我们试着在各种规格文档上多花些功夫，但效果却适得其反。我们试着延长交付系统的时间，却导致更多的人参与进开发过程。生产软件是为了支持人工作，但更多的人却为了生产软件而工作。另外，在开发初期确定过多的细节会导致文档不可靠。由于细节上的假设环环相扣，规格文件中的错误能轻易拖垮整个项目。

软件行业的业绩不佳，但也不必因此沮丧，因为这些问题有办法解决。敏捷软件开发1——包括Extreme Programming（极限编程）和Scrum等方法——就是解决这些问题的良药。本书余下的内容会详细介绍敏捷开发方法的核心实践——测试驱动。

1 Craig Larman所著的Agile & Iterative Development: A Manager's Guide（Addison-Wesley, 2003）一书很好地介绍了敏捷开发方法。

1.2　解决方案：测试驱动
我们遇到的问题可以分为两个方面：代码质量不高和不能满足客户需求。解决方法也存在两个方面：学会正确地构建系统，以及学会构建正确的系统。本书所介绍的测试驱动方法能很相似地应用在这两方面，差别只在于如何利用测试来构建出维护性高并能真正满足客户需求的软件。

在细节层面上，我们用TDD方法以测试驱动的方式编写代码。在较高的，即软件的特性和功能层面上，我们使用类似的ATDD方法以测试驱动的方式构建系统。图1-1从提高内部质量和外部质量角度上描述了这种方法组合。

从图1-1中可以看出，在这两个不同的层面上结合使用测试驱动，能保证软件的内部质量，同时能保证可见的外部质量。在下面的小节里，我们将会讨论TDD和ATDD是如何带来这些改进的。在深入技术细节之前，先看看测试驱动如何帮我们应付软件开发中的挑战吧。

图1-1　TDD用来提高软件的内部质量，而验收测试驱动开发保证开发出的软件能满足正确的功能需求

1.2.1　高质量的TDD

TDD鼓励优良设计，这种纪律严明的方式还能帮我们避免在开发中引入错误。用TDD开发，我们会写很多小的自动化测试，这些测试最终会组成一个有效的预警系统以防止代码蜕化。没人能在现有代码中凭空加入“质量”，而提倡短开发周期的TDD从项目开始就能保证较高的代码质量，并一直延续下去。

这种短开发周期的开发方式与旧方式有很大不同。我们习惯于先设计，然后编码实现，最后做一些并不完备的测试。（我们都是优秀的程序员，很少犯错，所以稍加测试即可，不是吗？）TDD完全颠倒了整个过程。我们会先写测试描述出目标，然后写代码达到这个清晰的目标，最后再设计——在已有代码的基础上找出最简单的设计。

开发周期的最后一步叫作重构。重构是种严格的方法，用于改变代码结构，消除重复，并改良设计。我们能通过持续重构逐渐地提升代码质量。

如果你还不够了解TDD的完整周期，不用担心，我们将会在1.3节中详细介绍。

回顾一下TDD的特点：这种开发方法能帮我们写出完全可测试的代码，在每个阶段演化出当前最佳的设计，还能帮我们避免陷入代码越写越糟的恶性循环。

说到质量，下面我们来讨论“质量”这相对抽象概念的具体含义，以及它对我们而言意味着什么。

	不同形式的“质量”

正如业内质量保证部门所见证的，人们倾向于把“质量”与软件的缺陷数量联系在一起。“质量”也可能表示软件对客户需求的满足程度。还有人认为“质量”表示的不仅是可见的外部质量，还应包括内部质量（这又可以表现为外部质量，例如开发成本维护成本等）。TDD可以提高所有这些不同定义的“质量”，因为它本质上有助于改良设计及提高代码质量。

测试没能覆盖所有代码分支是缺陷流入产品的首要原因。（或者是因为我们有些懒惰，没有认真地执行所有测试——至少不太认真，所以让缺陷漏过去了。）

使用TDD，我们能保证所有的代码都是有用的1，而且都会被测试覆盖。因为有高覆盖率的自动化测试，TDD能保证每个测试覆盖的功能都不会出现问题。因此，如何提高质量的问题就转化成了如何编写高质量测试的问题，解决了这个问题，质量问题也就迎刃而解了。

1 每行代码都是为了通过测试而写，所以不会存在无用的代码。——译者注

编写高质量的测试有一定的技巧，例如需要针对正常执行路径、边界值以及可能的错误操作分别做测试。在这方面，TDD可以促使我们从外在接口的角度考虑模块和类的设计。由于不用先考虑实现细节，我们可以站在更恰当的角度设想这个类的行为以及其他开发人员可能的使用方式，因而更容易发现代码中存在问题。

由于TDD关注高质量的代码及优良的设计，以往用于调试的大量时间，现在都被用在实现用户需要的功能及改良现有系统的设计上了。

	花更少的时间修复缺陷

TDD能帮我们缩短修复缺陷所用的时间。在引入缺陷的两个月后再去修复显然比起立即修复代价要大得多，因此有必要尽力减少引入缺陷的数量，尽快发现软件中已有的缺陷。

若能保证写代码时测试先行地小步前进，那么调试器也基本没用了，因为只有新添加的几行代码才可能破坏测试，所以找出问题会很容易，也不会像传说中的高手那样长时间地调试代码了。我们可以更快地修复缺陷，相应的开发成本也会降低。每个遗漏缺陷都可能造成几百甚至几万元的损失2，可不是一笔小数目啊。不用连续几个小时调试程序，我们也有更多的时间做其他更有意义的事情了。

2 http://www.jrothman.com/Papers/Costtofixdefect.html

更快速地完成用户所需要的功能有很多好处：我们有更多的时间用于清理代码，学习最新的工具和开发技术，赶上其他优秀的同事，等等。这些会帮助我们提高代码质量，变得更加自信，做事也更快。这样一来，我们TDD又会变得更有效。这种良性循环带来的提升空间几乎是无限的。

我们一会儿将会讨论TDD给我们开发人员带来的更多实惠，不过在这之前，我们先介绍ATDD吧。

1.2.2　用ATDD满足客户需求

TDD能从技术角度帮我们提高代码质量，使代码执行结果正确，容易理解，也容易维护。不过用TDD写出的代码的验证逻辑针对的是独立的代码块，而不是系统的具体功能。而且用测试先行的方法写出的最棒的代码也有可能做错事情，也许做出的功能不是客户想要的。因此，使用ATDD很有必要。要给系统添加新的功能，传统的做法是先写出需求文档，然后开发人员按照文档开发，完成后进行内部测试，最后交给客户做验收测试。ATDD则有些不同：我们会先写测试然后再实现功能，如图1-2所示。换言之，我们把客户需求转化成一系列可执行的测试，开发工作会基于这些测试，而不是基于开发人员各自对需求文档的不同理解。

ATDD拉近了最终用户和开发人员的距离，这是生产优秀软件的必要条件。在ATDD中，客户与开发团队会紧密地合作，定义出清晰的毫无歧义的测试，而不是花大量的时间写含糊不清的需求文档。这些验收测试能准确地告诉我们客户要求的功能是否已经完成。由于用户的需求全都转换成了可执行的具体的功能测试，因此可以确保开发出的软件切实地满足了客户的需求。

图1-2　ATDD用自动化的可执行测试驱动新功能的开发

这个过程和代码层面上的TDD很相似。用ATDD开发软件，我们会更关注系统行为的测试，而不是对象行为的测试。因此我们也更需要使用客户和开发人员都理解的语言交流。

TDD和ATDD需要配合使用。在系统层面上使用ATDD驱动开发过程，而在每个功能点的实现层面上则使用TDD。这两种TDD方法之所以要结合使用，并不是因为存在紧耦合，而是因为这样可以使其互相弥补，互相支撑，而且能够更好地发挥各自优势。

我们现在应该已经了解了，TDD和ATDD如何能帮我们交付高质量且满足客户需求的软件。我们随即将会深入了解TDD是什么，为什么能够帮我们开发出高质量的软件，以及如何“用正确的方法做事”。在1.4节中，我们将会讨论如何用ATDD在更高的层面上来驱动开发过程以满足客户需求，即“做正确的事情”。在这以前，先来讨论我们这些开发人员从测试先行的开发方式中能获得什么好处。

1.2.3　这对我有什么好处

没人会无缘无故地买辆新车，也没有人会仅仅因为开发方法够“新”就去使用它。要学一种新的工作方法必须有充分的理由，例如可以提高工作效率。我们现在已经知道使用TDD和ATDD可以帮我们提高代码质量，满足客户业务需求了。那么这种开发方法会如何让我们更享受工作呢？

根据我个人的使用经验，TDD起码有三大好处：

	我很少会接到技术支持电话，就算有，也不会为了找出问题而花很长时间调试；

	我对代码的质量很有信心；

	我有更多的时间提高自己的专业素养。

下面来一一解释这些好处。

	不再长时间调试代码

直到现在，我还记得几年前接手的一项开发任务。公司内部有一个专有文件格式解释器，我需要修复文件解释器中的一个缺陷。我阅读了成百行的代码，在程序的各个部分间频繁跳转，最终才明白如何修复这个缺陷。

当时我修改了解释器的部分设计，以为既可以修复缺陷还能使代码更容易理解（那时候我还没有开始使用TDD）。实现新设计并且通过编译用去了几个小时。我怀着由那灵巧的设计带来的激动心情打开了终端窗口，在测试服务器上安装了解释器，然后发现它居然不能正常工作！我完全不知道原因。用调试器运行代码后还是不知道问题所在。我当时花费了数小时时间用调试器跟踪执行代码，最后才发现了问题——是个极小的错误。我筋疲力尽地离开办公室，心情很沮丧，责怪自己太粗心大意。

后来我意识到这不是因为粗心，而是完成任务的过程存在问题——步子跨得太大，导致注意力分散。如果能用TDD的方式写代码，把开发过程分解为小的、集中的测试，想必我能立即发现那个代码分支中的问题。

好像那恐怖的调试体验还不够糟糕似的，墨菲定律3再次向我招了招手。不久我接到了客户怒气十足的电话，抱怨解释器在生产环境中崩溃了。我在修改解释器的设计时引入了至少一个严重缺陷。能找出更优的代码设计是一回事儿，而凌晨三点被愤怒的客户经理叫醒是另外一回事儿。（而这位经理被一个更恼火的客户叫醒。）

3 事情如果有变坏的可能，不管这种可能性有多小，它总会发生。比如你衣袋里有两把钥匙，一把是你房间的，一把是汽车的，如果你现在想拿出车钥匙，拿出的往往是房间钥匙。

如果当时使用了TDD，或至少写了必要的测试，那个晚上我应该可以多睡两个小时的。这件事强烈地激发起了我写测试的意愿，因为突然意识到我过高估计了自己在工作方面的能力。

	对自己完成的工作很有信心

我们当然都希望写出的代码没有错误。如果代码中存在太多的问题饭碗就会难保。而另一方面我们又希望尽早完成工作，若在写代码上用去了过多的时间，日子同样也不会好过。因此，我们时常需要判断当前工作是否已经完成以及何时开始下项工作。

此刻，让我们打开记忆的匣子。回忆过去某个写代码时的场景，用一分钟回想起那个时刻。

你是如何写那段代码的？事先在记事簿上做设计？一下写完全部实现期望一次通过，否则就全部推倒重来？在循环中找出过明显的问题吗？首次编译能通过吗？

你如何验证某段代码能正常工作？专门为测试写一个主函数？在用户界面上点来点去确认功能已经实现？在测试中发现过问题吗？用调试器一步步跟踪代码执行？费尽周折只为修复一个很小的缺陷？调试代码和写代码大体上哪个更费时间？

无论答案是什么，我希望你已经基本回忆起那些让你充满信心的代码是如何编写出来的了。好，我来问你个问题。

如果你写出的代码完美无瑕，会不会感觉十分自信？如果知道代码正如文档中描述的那样正常工作，会不会感觉心情舒畅？我会的。如果你能很快地完成工作，同时保证代码质量没问题，这种感觉又如何？若能一直这样工作，会不会很开心？

我不能保证你使用TDD后开发出的软件就能完全没缺陷，因为最终还是你写代码，如何避免缺陷取决于你。我能保证的是，在使用TDD后，你会对你的软件很有信心，因为你明确知道软件在各种情况下会如何工作。

这个方法对提高软件内部质量同样有效。这可以说是个良性循环。测试越好，代码质量越高，对代码的改动也越有信心。对代码改动有了信心，能够改动的地方就越多。改动越多，代码的内部质量就越高，也更容易编写测试。这显然是件好事！

	有更多时间做其他事情

TDD和ATDD并不会提高我们敲键盘的速度，但能有效缩短由于低效开发方式（例如调试代码，理解可读性不高的代码，或因为误解需求而返工）所浪费的时间。随着开发一步步进行测试会不断累积，我们对代码质量也会更有信心。我们不再会怀疑代码在不同情况下会有不同的执行结果，也不会担忧一些数据的组合会使程序停止工作，因此也不必一遍遍重复地做测试。

对代码越有信心，我们就能越快地开始下一项工作。当然，有时自信是盲目的，不过即便如此，也会比这点一下在那输入点数据来确认功能是否正常要强的多。

TDD和ATDD不是“银弹”4，但也可以算是分时系统以来最能提高软件开发效率的技术了。在下一节，我们会详细讲解TDD，然后讨论ATDD。

4 西方文化中用“银弹”来形容最强一招、最有效的手段、最大关注度、王牌等。——编者注

下面开始吧。

1.3　正确地做事：TDD
TDD是一种开发和设计技术，可以帮我们增量式地构建系统，也能保证代码在任何时刻都不会错得离谱。测试正是我们小步前进的方法。

在本节中，我们将会学到TDD的工作原理，也会了解这种技术所带来的好处。我们先从TDD周期开始介绍，这是TDD的核心内容。然后我们会解释让软件从一开始就能正常工作的意义。若要增量式地构建整个系统，我们必须能只为当前做设计，而非一开始就设计完所有东西。我们会讨论如何用TDD实现增量式地构建系统。最后我们会讨论如何运用这种方法来保证软件每天都很“健康”，每天都能正常工作。

开始吧。接下来要讲解的是TDD的测试—编码—重构周期。

1.3.1　测试—编码—重构

本章第一段曾经提到 TDD的原则十分简单：

写代码只为修复失败了的测试。

换言之，就是首先写测试，然后编码让测试通过。有些人会觉得这种方法和在学校学到的有些矛盾。学校教我们先做设计，接着实现，最后测试以找出代码中的问题。而TDD颠倒了整个过程，如图1-3所示。

测试先行，然后编码，最后做设计。这种“设计后行”的思维方法不奇怪吗？一点也不。这种设计有别于传统的“设计—编码—测试”过程中的设计。并且因为这两种设计区别很大，这种事后设计的方法甚至有了自己的名字——重构，表示把当前设计转换成一个更佳设计的过程。改名后的TDD周期如图1-4所示：测试—编码—重构。

图1-3　TDD颠倒了传统的设计—编码—测试顺序。我们会先测试，然后编码，最后设计

图1-4　让我们测试驱动开发人员着迷的测试—编码—重构过程。这幅图精确地描述了开发的过程，很容易理解，看起来也很酷

这小小的“测试—编码—重构”周期看似简单，其内部却蕴藏着巨大的威力。它足以改变每个人的软件开发过程的质量，从而提高整个团队、项目及组织的软件开发过程的质量。

 红—绿—重构

 TDD周期，即添加测试、编写代码通过测试及修改设计，也可以用“红—绿—重构”表示。这些颜色有什么含义？

 当我们进行TDD周期的第一步，添加一个测试时，测试会失败。这是因为这时候系统有问题，它并不具有我们所期望的功能。在一些开发环境中失败的测试会显示为一个红条，因此第一步为“红”。

 第二步是写代码通过测试。我们实现了系统应该有的功能，所有都测试通过了，包括为功能添加的新测试以及已经存在的测试。这时候红条变成了绿条，所以称为“绿”。

 周期的最后一步是重构，即改善现有代码的设计。因为重构只改变代码内部结构而并不改变外在行为，所以所有测试仍旧通过，还是“绿”。

 红、绿、绿，红、绿、重构，很上口，不是吗？

我们将会在第二章详细讨论TDD周期中的每一步，不过在这之前，我们会先大致了解如何做，以及为何做这三个步骤。然后我们会讨论其内在机理。

	先写测试

在TDD周期中的第一步中，我们会写测试，实际上这并不只是写测试而已，而是在做设计。我们是在设计API，即用来访问新功能的接口。编码之前写测试，我们会很自然地考虑新代码的调用方式。这过程就像拼图一样。我们必须根据拼图周围的部分来选择拼哪块，如图1-5所示。

图1-5　若不试着使用，我们怎么会知道接口应当是什么样子？测试先行的编码方式会促使我们站在代码用户（开发人员）的角度考虑，设计出更易用的API

这并不是件容易的事。也许你从用户界面专家那里了解到了设计用户界面有多么重要。软件内部的设计又何尝不是如此？我们这些开发人员不就是代码的用户吗？

若从这种角度观察代码，我们的思路会发生很大变化。我时常呆望着一些第三方类库的API，思考着该如何使用它们。这些类库的开发人员肯定是站在开发者的角度设计接口的，完全没从用户的角度考虑。接口是好是坏用过才会知道。这绝对是真理。若能测试先行地开发，我们肯定会对类库的好坏有所体验。

 注意　写测试时应当注意粒度。应当尽量写“正好足以失败”的测试，而不是一下写出整个功能点的测试然后花一个小时写代码让测试通过。问题领域、工具或技术都会影响编写测试用的时间，不过通常编写测试的时间都在几秒钟到几分钟之间。编码的时间也应如此。如果用的技术较复杂，那么写测试及编码的时间可能会变长。不过在第二部分我们将会提到那些所谓复杂的技术（例如Java Servlet或数据访问的代码）实际并不那么复杂。

设计简单易用的API并不容易，因此我们要善于借助工具。用测试来驱动设计就是行之有效的办法，用这种方法能设计出模块化并且可测试的代码。因为要测试先行，所以我们必须要让代码可以测试，没有任何商量余地。在TDD中代码都应当是可测试的，否则根本不会存在！

设计软件并不是只强调结构，满足当前的需要更加重要。一个会烧水、煮饭、炸薯片，还会做腌鸡的软件对一个只想喝杯茶的用户一点用都没有。如果你的汽车引擎多出来两个阀门或许没什么，因为需要额外动力时这些阀门或许能帮上忙。不过若要更换引擎中的所有阀门那麻烦可就大了。这就是过度设计的代价。

花钱开发并不需要的东西，还要为额外的复杂性买单。如果这项功能目前尚不需要，为什么要开发呢？不如先将这项功能记在备忘录上好了。有些功能完全有可能永远不用实现。

使用TDD做开发，你会明确地知道软件现在需要有什么功能。不是明天也不是昨天，就是现在。小步前进，写代码只为通过测试，我们就可以牢牢地控制住软件及其设计。有了自动化测试做保护伞，我们不再会误入歧途，而且会很清楚前进的方向，同时也能够确信所实现的功能正是用户所需要的。

“强调现在”正是TDD的核心。这核心思想会在TDD周期的第二步再次得到体现，即写恰巧足够的代码。

	写恰好足够的代码

编写恰好能通过测试的代码是TDD周期的第二步。为什么恰巧够就可以？新添加的测试之所以会失败，是因为它指出了系统应该有但尚未实现的功能。我们应该只用花几分钟就能实现这项功能，测试失败的状态不应持续太长时间。

让测试指出下一步该做的事情是TDD的基本理念。我们不仅仅是在制造代码，而是在实现一项具体的功能，而测试能毫无歧义地描述出这项功能。每次测试通过，我们都清楚地知道工作有了进展。

注意，写恰巧足够的代码是为了让测试尽快通过。因此当前的实现方式或许不是最优的。不过没关系，等功能实现、测试通过后，我们会回来解决这个问题的。有了测试做保护伞，就可以进行TDD周期中的最后一步——重构了。

	重构

重构是TDD测试—编码—重构周期的最后一步。我们回过头审视现有的代码设计，想办法改进。重构使TDD步伐更加稳健。使用TDD而不重构能迅速产生大量的烂代码。无论有多么充足的测试，烂代码终归还是烂代码。优良的代码质量能保证今后的开发效率，所以重构必不可少。这一步至关重要，所以我们需要用一整节详细讨论。

在这之前，我们先对小步地增量开发软件的方式做个概览吧。

1.3.2　增量式开发

所有敏捷软件开发过程都有一个共同点，即无论当前的功能有多么少，都要保证软件可随时发布，并且每天都要能持续产生可部署的版本（有些项目甚至每天都会构建出几个可发布的版本，直到项目完成）。这样，当最后发布期限来临时至少有可用的产品能发布。虽然产品或许不包括用户想要的所有功能，团队也可能没有完成迭代计划，但是有产品可以发布总比没有强，更何况这产品运转良好。

在图1-6描绘的过程中，已完成且测试过的功能不断地累积。在每个时间点上，都只有少量的功能尚未完成或集成。

很多项目会不断地推迟交付时间，最后整个项目都会被取消，一行代码都未能交付。通过迭代式的小的增量式开发，你完全不用担心这个问题，因为从第一个迭代起软件就是可交付的。同样，很多的项目在交付时质量不过关，因为直到最后一刻开发人员还在赶工。

TDD可以解决这个问题。在TDD过程中，我们会小步地前进，每一小步都会产生一个工作良好的产品，每一步都会距离目标更近一些。这些步骤非常的小（以分钟计算，而非小时或天），我们完全不用担心刚写出来的一大堆代码拼在一起不能工作。我们从不让软件偏离可用状态太远，因此软件一直都能正常工作。同样，我们会着眼于现在而不是预测将来，这样就能保持软件精简实用了。

图1-6　使用增量式开发，即以小的增量方式构建整个系统，我们的代码永远不会距离已集成的、可工作的状态太远。这样可以降低风险，因为未完成的工作一直都很少。我们以后将会学到，使用增量式开发，用户总能够看到真实的、可工作的软件，客户也能不断提出反馈，因此团队的工作也会更加高效

传统过程强调“事先设计所有东西，考虑所有的风险，这样架构才可以经得住考验，将来才能支撑起所有系统特性”。若采用这种方式，那我们是无法做到增量式构建软件，特别是依照成本和业务价值来增量式地构建软件的。传统的方式只能用于极其简单，或者每个细节都已经被透彻理解了的项目。而其他类型的项目则需要用迭代的办法一步步增量式设计。

如图1-7所示，在迭代、增量式的开发过程中，我们需要不断地在“实现新功能”和为支持新功能而“调整设计乃至架构”两项任务间来回切换。

图1-7　增量式演化设计是指在系统不断添加更多的功能和行为的过程中，不断地微调代码结构。在代码生命周期的任何时刻，代码所展现的都是开发人员为完成现有功能所做的最好的设计。用这种方法，我们可以演化出能经受实践检验的架构

这就是增量式演化设计。我们只为完成当前功能而设计，而不会试图事先做完所有设计。按照开发过程中获得的信息调整当前设计，而不是在项目一开始的所谓设计阶段就企图预见到所有应用场景，然后基于这些或实或虚的假设做设计。

事先设计的量要依情况而定，需要考虑当前团队、个体，以及所采用的技术等因素。我们要时刻注意保持正确的方向，所做的设计大部分都不对？那就少做点事先设计。发现设计不容易扩展？那就多做些事先设计。

我们在文中常常提到“小步骤”这个词，下面来解释一下其优点吧。

	小到能够装进我们的脑袋

有两个原因促使我们把大的任务分解成许多小任务。首先，我们要解决的问题通常都比较大而且模糊，其复杂性也不易控制，因此我们需要把它分解成更容易解决的小问题。不知道你是否和我一样，至少我的脑袋不太擅长对付这种大的怪物。图1-8演示了如何把复杂的问题拆分成更简单的小问题，然后一个个解决。

图1-8　要解决复杂的问题，先集中解决其中一小部分效果会更好

大部分人的工作记忆都只能同时处理5到7个概念。如果一次处理的信息太多，大脑就必须在工作记忆和长期记忆之间来回切换，因此难免遗漏部分信息1。若能把整个解决问题的过程分解成一个个小的阶段性目标，整体进度也就有了具体的衡量标准。在开发过程中，由于整个过程划分成了一系列的测试，利用这些测试，我们完全可以度量出当前的开发进度。

1 工作记忆就像内存，而长期记忆类似于外部存储，例如硬盘。内存速度比硬盘快几个数量级，因此若计算所用数据都在内存里，那么运算速度也会快很多。有兴趣的读者可以参阅科学出版社引进的《人脑功能》。——译者注

在TDD过程中我们会演进式地设计系统，所以正好是小步地前进。我们会持续地改良系统设计，在开发过程中逐渐地演化出最适合当前需求的架构。

现在我们来仔细研究演进式设计为何行之有效，为何能让我们的代码“活”起来，以及对我们的工作带来的影响。

	演进式设计

很多程序员可能都遇见过这种事：某块代码亟待修改，却没有人愿意接手。为什么会这样？这段代码正巧是两个组件间的接口，修改工作太过困难。而在演进式设计中，我们常常会做这种修改。代码应当是“活的”并且是“可生长”的，决不能无视强烈的变化需求而保持一成不变。正因为如此，演进式设计可以提高设计质量，进而提高整个系统的质量。

那么，究竟该如何做演进式设计呢？演进式设计也是小步前进的。每种敏捷软件过程中推荐的事先设计的量都不同，不过这些过程都有一个共同点，即要求架构恰好能满足需要即可。例如你在开发某个软件，到了中期时遇到一个需求，要用到邮件服务器，直到这时候你才会往架构中加入邮件服务的构件，才会安装邮件服务器，等等。通常这种类型的架构改动很容易，但是并不是所有修改都是这样。

软件系统会有些非功能性需求，例如性能等，修改现有架构支持这类需求通常很不容易。例如把一个单机版的桌面应用程序改成能通过网络与多用户服务器通信的桌面客户端，工作量可不会小。同样，让一个批处理应用程序支持实时自动更新也不是件轻松的任务。

不过这类需求不会让开发人员多惊讶。虽然我们通常难以预测需求变化，但是根据现有需求预见将来的需求变化并不是不可能的。我们将这类变化称为可预见的变化，如图1-9所示。不过，可预见的变化并不一定会发生，有时甚至永远不会发生，还有的会因为某种原因而转化为不可预见的变化。

图1-9　系统的演进式设计同时受“可预见”和“不可预见”两种变化的影响。不过值得注意的是，相当一部分“可预见”的变化都不会发生，或者以某种不曾预料到的方式出现，这时它们就变成了“不可预见”的变化。我们需要运用常识和敏锐的判断力，为可能发生的变化作准备。大部分这种变化或许永远不会发生

做演进设计时我们一样要使用常识，不过要明白事情是会发生变化的，同时要注意现有任务的优先级。

例如我们知道系统目前会通过网络从公司的CRM系统中更新信息，不过在几个月后更新过程会变为实时的，而且会用HTTP协议调用Web服务。在这种情况下，我们该如何应对实时数据集成带来的新需求呢？

我们应当把数据处理逻辑和数据接收逻辑分开吗？当然！那我们应当现在就开始做一个基于批处理的系统，等Web服务上线后直接就能投入使用吗？或许应该，或许不应该。

总之我们需要在“避免做无用功”和“先挑省事的方法做，等出了问题再说”之间做出权衡。实践一次又一次地证明，比起纸上谈兵的事先设计，演进式设计方法更加经济有效。

	遵守纪律

再强调一遍，每个项目要做的事先设计的量都不一样（原本就不该一刀切），但是在演进式设计中，我们总会为添加新需求而修改大量现有的代码。这种改动相当频繁，所以代码质量一定要高。为此我们需要不少严格的规章纪律，确保开发人员不会降低代码质量2。幸好，演进式设计及其辅助实践可以帮我们解决这个问题。它能帮我们把缺陷数量降低到接近零的水平3，而不会让整个系统构建在大堆隐藏的缺陷的基础上。

2 http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf。

3 我并不打算证明零缺陷是可能的，你可以随意发表你的意见。

这些辅助性的实践究竟是什么？简言之，这些实践都是为了保证软件的质量在任何时候都足够好，而重构是其中很重要的一环。我们前面提到过重构是TDD周期，即测试—编码—重构的最后一步。下面我们会详细讲解重构的重要之处。

1.3.3　重构以保持代码的健康

在小步前进的过程中，我们会不断扩展当前设计以支持新功能，也会不断抛弃旧概念，引进新概念。在这种情况下，软件的设计必然会变得很不一致，几经失衡，不易理解，也难以扩展。这些肯定会给我们交付软件的能力带来负面影响。不过不用担心，通过做重构，我们既可以演进式地设计，又能保持系统设计不出问题。

来看看Martin Fowler在他的著作《重构：改善既有代码的设计》4中对重构的定义：“重构是一种训练有素、有条不紊的代码清理方式，它必须在不改变代码外在行为的情况下，改进程序的内部结构。”这句话虽然很短，但却传达了很多的信息，下面我们来详细解释这句话的含义。

4 本书已由人民邮电出版社出版。——编者注

	重构是种纪律严明的方法

当重构（动词）时，我们并不仅仅是修改代码而已，而是通过一种严格的方式改善现有设计。这种方式叫作重构（名词），它能小步地改变代码结构同时不改变代码的行为。换言之，重构是指用某种严格的方式重构（动词）代码。重构或许会显著地改变当前设计，不过这种改变总是小步进行的，而且每一步都会验证代码的行为没有改变。

我们可不仅仅是在修改代码。我们要首先确定设计中的问题，然后选择对应的重构方法小心彻底地重构这段代码。我们会静候问题浮出水面，然后再解决问题。我们并不会预测设计可能出现的问题，也不会为这种问题作准备——因为这不会使问题减少，反而会让事情变得更糟。

	重构是种转换过程

重构是两种状态间的转换。在初始状态中，代码的设计存在一定问题，而在目标状态中这些问题都已经被修复了。图1-10中的重构手法为“以委托取代继承”（请参考Martin Fowler的《重构：改善既有代码的设计》一书）。这种重构手法的目的在于把继承转化成委托。

若子类只想重用父类一小部分功能，但却继承了父类大部分我们并不需要的数据和功能，这时候就可以应用重构这种手法。

有些重构方法非常成熟，对很多现代开发工具都有很好的支持。把重构过程自动化使得用重构做演进式设计更容易了，无论项目的规模有多大或复杂性有多高。（很难想象仅仅为了给一个方法重命名而去搜索几十个源代码文件，用查找替换功能一处一处改名，然后再把改动提交到版本控制系统中去。）

图1-10　重构是指代码在功能完全相同的两个状态或结构之间的转换。在图中，我们用委托替代了继承。转换后代码功能不变，但却更符合我们当前的设计需要。这些转换不是绝对的改进，而仅仅是用户两种设计方案互相转换的“纪律严明”的方法而已。很多重构手法都有其反向重构手法，重构的方向正好相反

 重构到模式

 有时候重构的起始状态或结束状态可能会对应某个设计模式5。所谓设计模式就是对特定问题的通用解决办法。虽然我们日常的重构动作都很小，并没有像使用设计模式那样会改动大量的代码，不过重构过程中也需要发掘代码中可能的设计模式，然后显式地重构出模式。要深入了解重构和模式之间的关系，请参阅Joshua Kerievsky所著的《重构与模式》6。

 5 Partha Kuchana编著的Software Architecture Design Patterns in Java（Auerbach, 2004）是介绍Java语言实现的经典设计模式的好书。

 6 人民邮电出版社出版。——编者注

	重构会改变内部结构

重构用于改变系统内部结构——代码，因此大部分重构手法都会涉及实现细节，例如应用最为频繁的重构手法“重命名”。给方法或者局部变量重命名对系统的设计貌似不会有太大影响，但是若把某个含义模糊的名字改得能清晰地表达出本意，那么对阅读代码的人就会轻松多了。

这些小的重构是更大的重构的基础。在“大重构”中，我们通常会改变代码的职责，引入或移除继承结构，或者做一些会涉及几个类的类似操作等。最终大重构都可以分解为一系列小步骤，例如给变量重命名，添加一个新的类，改变方法返回值，等等。

虽然从技术角度来看“重命名”等重构方法使用率最高，但重构最主要的却是为了消除重复。重复是指两个方法或类中有相似的代码。我们可以把重复的代码提取到公共方法中，然后再调用这个方法来消除重复。若代码中存在重复，表明代码职责划分得不够清楚。重复对系统当然是有害的，因为它使系统变动更麻烦。让逻辑和职责在不同地方重复一定会引入缺陷，因为我们很容易修改一处而忘记其他的。

重构时不仅不能引入缺陷，也不能添加新功能。重构应当保持系统原有行为。

	重构保持原有行为

Martin Fowler提到重构应该“不改变代码的外部行为”，这是什么意思？这是指无论怎么修改代码，所变化的都只有代码的设计和内部结构，外部可见的行为和功能会维持原样。换言之，代码的用户应当对重构毫无察觉。

改变一个类的公共方法的名字，肯定会影响到调用这个方法的代码，但是这个方法的行为不应该发生改变。同样，调整公共接口背后的代码也不会改变接口提供的功能。

 注意　现在我们已经知道了什么是重构，不过，知道什么不是重构也很重要。这些年我常听到“重构”这个词，不过在大部分情况下，人们只是想表达“重写”或“编辑”而已。

重构时只能改变系统内部结构而不能改变系统外部行为，对吗？那我们怎么知道真的没有改变系统的外部行为呢？当然是靠测试了！测试可以确保软件正常运行。

1.3.4　保证软件正常运行

保证从项目第一天起就能交付软件，说起来容易做起来难。既要不断重构代码，又要保证重构工作不破坏已有的功能，可不是件容易的事。在无人督促时，我们有可能会偷懒。虽然TDD中测试的主要目的是帮助我们设计和开发软件，不过这种方法也能督促我们坚持正确的做事方式。

测试并不是负担，不过许多人都不这么认为7。手工测试的确很慢，也容易出错，因此开发人员（甚至专业测试人员）都不喜欢做测试，总会跳过某些手工测试，猜想待测功能不会有问题。不过手工测试的缺点是很容易克服的，把手工劳动转化为自动化形式就是我们软件开发人员的本职工作，因此把手工测试变成自动化测试完全难不倒我们！

7 实际上测试先行地开发时，写测试是种乐趣！

	用自动化测试做保护

回归是指返回到更初级的状态。在软件开发领域，回归表明已有的、曾经可用的功能不再能正常运转，即从正常工作的状态退化到不能工作的状态，如图1-11所示。

图1-11　测试套件在代码周围形成了一个模子。若改动破坏了功能，模子就不再符合了。若模子破损了，我们也就知道不好的事情发生了

回归不会平白无故地发生。实际上，是我们开发人员自己修改代码时引入了缺陷才会出现回归。作为专业软件开发人员，我们当然希望能迅速知道当前改动是否会破坏现有功能，因此必须依靠测试套件。我们可以随时执行所有测试，若测试失败了，就表明某项功能出现了问题。

这种测试称为回归测试，在整个开发过程中，回归测试会被反复执行许多遍，以保证以前发现的缺陷不会在系统发生上千次修改及变化后再次出现。换言之，这种测试是为了保证自上次运行测试以来，软件没有发生回归。

测试套件有许多重要特征，首先其必须能容易运行——否则人们就会试图绕过测试，冒着破坏现有功能的风险提交代码。另外还要能快速地执行——否则人们就不会常常执行测试，因此又会跳过很重要的功能验证步骤。

若不频繁地执行测试，那么将来我们可能花费很多宝贵的时间修复缺陷，因为那时完全不知道缺陷是在哪一步被引入的。及时反馈所带来的正确上下文，可以帮我们明显提高开发速度，因为不需要花时间找出引入缺陷时的上下文。如果我们在每次微小变动后都运行自动化测试，那么我们可以精确地知道出错的是哪几行代码。

	快速获得反馈

有时我们没法很快地执行完所有测试。那些访问数据库、共享磁盘、Internet上的Web服务器或者目录服务的测试会让测试速度变得很慢，甚至连访问本地文件系统都会使整个测试多运行数分钟时间。而且有时候测试次数太多，就算优化很多次依旧会占用开发人员大量的时间。

在这种情况下，可以选择运行一部分测试 (通常是最可能发现当前改动所引发缺陷的那部分测试)，提交代码，继续下一项工作，让构建服务器（build server）在后台运行所有测试。构建服务器有时称为持续集成服务器8，因为它经常和“持续集成”一起使用。所谓持续集成是指开发人员频繁地集成修改过的代码，使得集成几乎是“持续”的。

8 Martin Fowler的文章http://www.martinfowler.com/articles/continuousIntegration.html详细地介绍了持续集成。

 拥有持续集成服务器并不等于做持续集成

 不应该把拥有持续集成服务器与进行持续集成等同起来。持续集成服务器可以使构建过程自动化，还能产生精美的报表。但如果开发人员很少提交代码，那么持续集成服务器就会形同虚设，开发人员的代码也会变得不同步，集成时当然会碰到更多的代码冲突。

这种方法基本上是用“上次修改代码没有破坏任何功能”的信心来交换开发速度的，而这种交换则建立在开发人员挑选的部分测试没有覆盖的功能不会被该修改破坏的假设之上。

我们可以把这种方式想象为快速获得反馈的“乐观锁”。如果测试没有失败，我们可以只关注于开发，完全不用花时间去运行那些不会失败的测试。如果让构建服务器运行的测试失败了，那我们需要用更多的时间找出问题所在，因为手中的任务已经换了，问题发生时的上下文也改变了。我们需要做出取舍，因为若没有问题发生的上下文，修复缺陷的时间和精力会大大地增加。

回归测试必须要能够重复执行。也就是说我们要么雇人用大量时间重复执行成千上万的回归测试，要么自动化所有的测试，让计算机来自动地执行回归测试。

我们现在已经明白了TDD是什么，如何运作，也明白了采用这种技术的原因。我们将会在第一及第二部分的剩下章节中详细讲解这种技术，不过在这之前，我们会先了解验收测试驱动开发的基本功能，以及如何能帮我们开发出满足客户需求的软件。

1.4　做正确的事：ATDD
测试一直都是软件开发过程中重要的一环，测试的具体方法这些年发生了很大的变化。在把软件交付给客户之前，我们开发人员都会想尽办法确保交付的软件没有问题。随着敏捷软件开发（如XP）过程的逐渐流行，我们检测软件质量的方法也发生了不少变化。

测试曾经只是为了验证软件功能和需求文档所描述的一致，不过现在测试的功能已经不局限于此了。实际上，利用测试从功能的角度驱动软件开发过程，正是我们解决软件不能满足客户真正需求问题的方法。这就是验收测试驱动开发（ATDD）的内容。简言之，我们会先写一个测试，然后再实现测试所描述的功能。

因此，测试不仅仅是一种验证工具，还是需求文档必不可少的一部分，同时也是与客户协作的媒介。在本节中，我们会详细讨论测试的这些新用途，先从促进开发人员、测试人员以及客户之间的交互开始谈起，然后讨论如何把测试当作能促进协作的“共同语言”。

在讨论ATDD促进协作等特征之前，我们先来理清ATDD和TDD之间的关系吧。这两者名字很相似，必定存在某种联系。

1.4.1　名字的含义

从ATDD的名字“验收测试驱动开发”中可以看出，这种技术与“测试驱动开发”有一定关系。“验收测试驱动开发”中的“测试驱动开发”部分显然源自TDD，那么剩下的部分究竟有何含义？验收测试是什么？简单地说，验收测试是用来检测某项功能的完成情况的。如果某个功能的所有验收测试都通过了，那么这个功能也就完成了。

无论用何种格式表述需求，都可以采用ATDD。我们可以把需求记录在用户用例、用户故事或者其他文档上，都没关系。有时采用用户故事管理需求的团队倾向将这种方法称为“故事测试驱动开发”，实际上还是指同一种技术。还有人喜欢称其为“客户测试驱动开发”，这样也可以，因为验收测试的所有权本来就是客户的。

 注意　尽管ATDD很像TDD，也借鉴了TDD的许多优点，但这两种开发方法可以分开使用。那些不使用用户故事的开发人员，或者实现功能前不先写测试的开发人员，仍然可以使用TDD。那些不用测试先行的方式写代码的团队，仍然可以用ATDD测试先行地实现新功能。这些技术互相弥补互相支撑，结合使用时更能发挥其作用。

无论我们用什么格式或工具来管理需求，ATDD的主要目的都是促进客户和开发团队之间的紧密协作。下面我们来讨论测试驱动方法为何会有这种作用。

1.4.2　紧密协作

在任何由人参与的复杂活动中，紧密协作都至关重要，采用ATDD来开发软件的活动也是如此。我们期望团队能够像一个整体，而不是开发团队、业务分析团队和测试团队截然分开，更别说设立一个单独的质量保证部门了。

要想使整个团队的生产力达到最高，团队成员之间必须能有效沟通，能面对面地讨论如何构建高质量的软件。若客户、测试人员、业务分析人员和开发人员之间用测试计划、需求文档和测试报告来交流和沟通，那可不行。使用ATDD，我们可以把知识、技能和能力汇集到一起，有效地协同工作。

下面我们来看看为什么这种紧密的协作能提高效率，消除对需求的误解，减少返工所带来的开销，进而帮助我们开发出真正满足客户需要的软件。

	看得见摸得着的软件

有些团队会闷头数月开发软件，完全不与客户沟通，这样开发出来的软件很少能让客户真正满意。若能不断地向客户展示已完成的功能，当软件中有些功能不正确或者与客户需求不符时，我们会立即得到反馈。若能尽早得到反馈，那么我们就能减少项目风险，降低成本了。此外，若能把所有完成的功能都展示给客户看，那么我们会清楚地了解当前进度，而不会像基于文档开发方式那样常常乐观地误认为任务“已经完成90%了”。

	建立信任及信心

尽早以及频繁地交付软件还可以在团队和客户之间，以及团队内部建立起信任感。通过向客户（以及自己）展示已完成的功能，整个团队工作起来会更轻松。

	客户做主

增量式软件开发过程中的客户权利，与传统的瀑布式开发过程中的客户权利有很大差别。在增量式开发过程中，客户有权决定哪些功能要先开发。同样，若团队不能在既定的预算和时限内完工，客户也可以取消某些功能。

功能的开发成本当然会影响到客户的决策。开发成本由开发人员估算，包括推迟开发的成本，以及改变开发顺序后的开销，等等。

若用户可以控制自己的钱花在哪些功能上，那么他们对待项目的态度也会发生变化。最终由客户决定他们的钱花在哪些功能上，绝对可以激发起客户的热情。

	培养共同语言

通过鼓励测试人员、开发人员以及客户之间的沟通协作，我们可以营造出一个氛围，在这个氛围中，有价值的信息可以在团队中迅速得以分享。此外，随着团队成员间不断地沟通，相互之间也会更了解，同时也会慢慢培养出共同的语言，这样沟通效率会变得更高。软件开发是人参与的活动，无论如何都不能忘记这一点。

我们好好想想，把验收测试作为整个团队（包括客户、测试人员及开发人员等）沟通时使用的共同语言的基础，是否可行呢？

1.4.3　把测试作为沟通的共同语言

需求不清是软件开发中最大的问题之一。要清晰地表达出需求，保证需求在记述过程中还能保持原样，绝不是件容易的事情。有些人甚至认为这根本不可能，毕竟我们不会读心术1。

1 如果你可以，请马上联系我们，公司还有一个高级客户读心术专家的职位空缺。

当用文档（例如需求文档）作为沟通的媒介时问题尤为突出。文档绝对不是传递信息和交流的好方法。若我们能把客户需求转化成可执行测试，通过测试来验证系统是否满足客户的需求，那么问题就会少很多。这就是“以测试为规约”的好处。

	以测试为规约

若把测试当作需求的严格表述形式，那么至少在理论上能通过所有测试的系统一定能够满足客户的需求，当然测试一定要充分覆盖系统的每个部分才行。不过在现实的软件开发项目中，要做到这一点并不容易。

测试不会发现所有的缺陷，有一定商业软件项目经验的人绝不会因此感到困惑。部分原因是我们漏掉了一些应该想到的测试，还有一部分原因是人类的本性和常常欺骗我们的直觉促使我们跳过一些测试以节约时间。

如果测试无论如何都不会彻底，那么把测试当作规约还有意义吗？测试真的可以描述需求，定义概念吗？当然把测试当作规约，不会解决所有的问题，但其确实也有一些显著的优点：

	可以自动化执行，更快地提供反馈；

	能更可靠地执行测试；

	少一个翻译的步骤。

首先，许多费时费力的测试工作都可以让自动化的可执行测试来做，比起手工测试，自动化测试还能显著缩短反馈周期。其次，计算机不会感到疲倦，也不会偷懒，让它帮忙做测试能够避免我们人类与生俱来的人性弱点。再次，反正把需求记录在文档上注定会有问题，现在只不过把记录需求换成记录测试用例而已，事情还能糟糕到哪去呢？

虽然把需求转化成测试的过程中仍然可能出现问题，但是在执行测试时知识转化量越少，需要人解读的地方越少，出错的机会就越少。

	以例子为规约

此外，以测试为规约的最显著的好处在于可以采用“以例子为规约”方式来描述需求，而不是用抽象的描述（当然了，在表述需求时，总是要有部分描述性文字的）。换言之，以例子为规约的需求表述方式提倡用例子表达需求，例如“若订阅价格为$20，税率为10%，那么系统应当从用户账户中共收取$22”，而不是用传统的需求文档中常见的“系统应当计算税”这种表述形式。

对于简单的需求，基于例子的方法并不比传统的“系统应当这样……”的方法好多少，毕竟我们都知道简单的计算税金的方法。然而并不是所有功能都这么简单，对于复杂的业务逻辑，误解的可能性会高得多。例如某项特定的交易需要交多种税，而且不同的交易地点有不同的税金计算规则，这时具体的例子会很有用。

以例子为规约的方式很符合我们的直觉，而且还很容易把需求联系到真实世界以及我们要开发的软件上。在TDD中也能使用以例子为规约的方式。只不过以例子为规约的验收测试表述的是系统的功能，而以例子为规约的单元测试表述的是代码实现而已。

软件内部质量和外部质量都很高，我们对工作也更有信心，客户也因为软件完全满足了需要而非常乐于和我们合作——要是能做到这些那就最好了。毕竟，在理论上，一切皆有可能。下面我们就会停止理论层面的分析，开始讲解真正的实践技巧。不过在那之前，我们先来讨论有哪些工具可以使用。

1.5　TDD工具
工具十分重要。想象一下若没有编译器、编辑器以及操作系统，软件开发将会多么困难。经过数十年的技术进步，软件开发工作已经大大简化了。我们在使用TDD开发程序时也一样，好的工具能使情况大为改观。下面我们将会简要介绍三种主要的工具和技术：单元测试框架、持续集成及其实现工具以及代码覆盖率。

1.5.1　使用xUnit做单元测试

Kent Beck在很多年以前用SmallTalk语言编写了一个叫做SUnit（http://sunit.sf.net）的单元测试框架。这个框架在软件开发社区内掀起了一阵狂潮，随后几乎所有语言都有了自己的移植版本1。对Java开发者来说，JUnit是标准的单元测试工具，它也是由SUnit移植而来（可以在http://www.junit.org/下载）。所有这些参照SUnit或JUnit而设计的单元测试框架都相似，因此被统称为xUnit。只要掌握其中一种，其他的也就不难学习了（只要你熟悉对应的编程语言就行）。

1 SUnit和JUnit在ColdFusion、C#、C、C++、Delphi、Action Script、Haskell、JavaScript、Visual Basic、JScript、Lingo、LISP、Lua、Objective-C、PL/SQL、Perl、PHP、PowerBuilder、Python、Ruby、Scheme、Tcl/Tk及Korn Shell等语言中都有移植版本。 Ron Jeffries维护了一个xUnit框架的列表：http://www.xprogramming.com/software.htm。

xUnit中所定义的单元测试框架到底是何概念？单元测试框架是指能够辅助单元测试编写、测试以及报告的框架。例如JUnit提供了许多基类供开发人员扩展，还提供了一些比较执行结果的类和接口，等等。框架还会提供不同的测试执行器（test runner）来运行单元测试。这个类会收集所有测试类，执行之，然后收集测试结果，最后用文本或者图形的形式将测试结果展现给开发人员。

本书中我们将会使用JUnit及Java，实际上还会用到许多JUnit的扩展，以测试驱动不同的组件。如果你还不熟悉JUnit，参阅附录中有关这个工具的简介。不过现在不要花太多时间研究JUnit，我们还会介绍许多工具，例如支持ATDD的工具等。

1.5.2　支持ATDD的测试框架

大部分的单元测试框架都基于xUnit的概念，但在验收测试世界中，框架的类型就相对较多了。产生这种差异主要是因为功能层面的验收测试概念相对较新，在没有什么可记录的情况下，记录—执行模式的自动测试工具就不能正常工作。

此外，系统用户界面的共性比较少也是造成验收测试框架种类繁多的一个原因。不过Web应用除外，因为我们可以通过标准的HTTP协议访问几乎所有的Web应用程序。除了技术因素之外，是否能很好地支持客户协作也是考察这类工具的一个重要因素。

有些验收测试工具是表格形式的（例如Fit及Fitness），这样开发人员、测试人员以及业务分析师就能很好的与非技术背景的客户协作编写测试了。除了支持表格形式测试的Fit家族，还有能用纯文本编写测试的框架，Exactor是这类工具的代表。采用更技术化的方式编写测试有时也可以，例如脚本语言。而有时候，即使有许多框架可以选择，自己编写一个测试框架也未尝不可。

我们将在第三部分讨论验收测试时详细介绍这些工具。现在我们先继续讨论下一个工具——持续集成服务器。

1.5.3　持续集成及构建

若团队成员会不断改动项目各个部分的代码，那么开发人员集成完成的工作时也会遇到更多问题，这种问题在传统开发方式中并不常见。在采用TDD开发方式的团队中，代码都是集体共有的（Collective Code Ownership）2，每个人都可以修改系统任何部分的代码。

2 如果开发人员需要征得代码所有者同意后才能做重构，那么TDD还能用么？我想不太可能。当然事情不是非黑即白的，我听说已经有团队成功使用了各种混合代码所有权制度。

因此只要团队坚持重构，那么就不断会有小的变化持续地流入代码库。在这种情况下，如果等两天才提交所有的改动，则难免要合并代码以解决冲突，这可不是件有趣的事情。

基于以上原因，我们有必要更频繁地与代码库保持同步。在开发人员本地代码与代码库之间的同步，即持续集成的过程中，我们不仅要保证代码能够集成（能编译），还要运行所有测试，以保证集成后的代码正常运转。不过在实际的项目中我们常需要做些取舍，下面将会讨论。

	基于实际情况做取舍

进行持续集成实践的团队在提交代码前常常只运行与所作修改相关的部分测试，让持续集成服务器在后台运行所有的测试（包括单元测试、集成测试和功能测试）。在图1-12中，持续集成服务器在监测代码库的变动。

实际上，这是很多团队需要面对的很现实的取舍。运行所有的测试会耗费大量时间(几分钟，甚至几个小时)，而开发人员所做的改动只会影响到一小部分的测试，也就是说余下的大部分测试不会给开发人员带来有价值的信息。所以在提交代码前只运行相关的一部分测试（持续数秒）既合情又合理。

我们所做的修改偶尔会破坏掉本机运行的测试没有覆盖到的功能，不过持续集成服务器通常在5～15分钟后就能够发现最新的代码中存在的问题。

你现在是不是已经在想如何实现这种持续集成服务器了呢？

图1-12　描述了典型的场景。开发人员在本地运行一部分自动化测试(1)，然后把本地代码提交到代码版本控制系统中去(2)。新提交的代码改动会使持续集成服务器开始一轮新的构建(3)。在新代码构建完成后，持续集成服务器会发送电子邮件把构建报告发送给开发人员(4)

	有多种持续构建服务器可以挑选

要使用持续集成，我们不用自己实现持续集成服务器，有许多开源及商业的实现可以选择。其中较流行的有CruiseControl（http://cruisecontrol.sf.net）、AntHill（http://www.urbancode.com）、Continuum（http://maven.apache.org/continuum）以及Bamboo（http://www.atlassian.com/software/bamboo/），新的实现也层出不穷。

如果有兴趣了解持续集成背后的原理及相关工具，请参阅Martin Fowler的文章《持续集成》3。James Shore也写了不少关于持续集成及持续集成工具的好文章4。

3 http://www.martinfowler.com/articles/continuousIntegration.html

4 http://www.jamesshore.com

1.5.4　代码覆盖率

许多开发人员都可能会熟悉Lint（http://www.splint.org）等静态代码分析工具。不少Java开发人员都用过PMD（http://pmd.sf.net）来检测源代码中的问题或者分析源代码的复杂性。随着自动化测试，特别是自动化单元测试的不断兴起，衡量代码覆盖率（也叫测试覆盖率）的工具也不断涌现。简言之，代码覆盖率是用来衡量自动化测试对产品代码的语句、分支及表达式等的覆盖程度的指标5。

5 若想了解更多的代码覆盖率的原理以及工具，请参照我的文章《代码覆盖率简介》（http://www.javaranch.com/newsletter/200401/IntroToCodeCoverage.html）。

若在构建中检测代码覆盖率，我们就能很清楚地知道测试是否充分了。在团队刚开始采用TDD或单元测试时，这种方式尤其有用，因为它能指出哪部分代码测试的不够。

就像其他源代码的衡量标准一样6，代码覆盖率也有可能被人误用。一味追求高测试覆盖率并不是明智的行为。有时因为API等的缘故，我们要去测试那些绝不可能出现的情况才能把覆盖率从99%提高到100%，因此要恰当地使用此工具。

6 你听说过按照代码行数来发工资吗？以前确实有过，不过不是什么好方法。

 合理的代码覆盖率

 每当谈及代码覆盖率时，总有人会问“覆盖率的标准应当是多少？”应该是100%，90%，还是80%？

 答案是，看情况。选择覆盖率的标准时，应该考虑所用的技术、语言以及开发工具等，还要考虑其他许多因素。Java及J2EE项目通常会选择85%作为标准。之所以是85%，并不是因为某些功能没有测到，而是因为语言和API的设计风格使得100%的覆盖率不太现实而已。

 我曾经和一位资深咨询师及作家J. B. Rainsberger讨论过这个问题，他对此的看法是 “把100%的覆盖率当作目标，不过你会最终发现85%更加合理”。

我们并不打算详细讨论代码覆盖率工具，有兴趣的读者可以去研究一下Cenqua Clover (http://www.cenqua.com/clover)、Cobertura (http://cobertura.sf.net)或EMMA (http://emma.sf.net)等，这些都是好的代码覆盖率工具。

工具就介绍到这里吧。在后面的章节中我们会学习各种测试的方法，那时会接触到更多有用的工具。不过现在只要了解单元测试框架如JUnit的基本原理，以及其与TDD的关系，就已经足够了。

下面我们来做个小结，然后就该实战了！

1.6　小结
在本章开始部分，我们介绍了在给客户交付支持组织经营运作的软件过程中遇到的问题和挑战。传统的软件开发方法在这些方面尚有相当大的改进余地：制造出的软件缺陷率高，不容易修改，修改成本高，且不能满足客户的真正需要。

TDD是一种设计和开发方法，它能帮我们从项目开始就构建出可运行的软件，以增量的方式添加新功能，使软件在整个开发过程中都能工作良好。通过演进式设计，并且应用重构优化每一步的设计，我们可以防止代码质量随着时间推移而下降。TDD能帮我们正确地做事情。

用这种纪律严明的方法小步前进，我们可以降低缺陷率并交付高质量、易维护，并且容易改动的软件。这样，要写的代码更少，修复缺陷所用的时间更短，有更充足的时间做有用的事情，我们会更加自信，项目进展也会越来越快。

为了开发出正确的产品，我们可以采用ATDD开发方式。ATDD不是一种测试技术，而是一个功能强大的开发工具，它能有效地促进客户、测试人员、开发人员之间的交流协作。通过增量式开发软件，用面向客户的测试作为讨论和反馈的基础，ATDD能使整个团队紧密地协作。依照客户指定的优先级，在整个项目过程中不断开发出可用的具体功能，我们能够赢得信任并增强自信，交流也因相互之间有了共同的语言而更加高效。

在第一部分的后几章中我们将会学习TDD开发的来龙去脉。这种技术在帮我们按时成功完成低缺陷率软件项目方面具有无限的潜力。本书第二部分会介绍如何在Java及J2EE技术下使用TDD。在这些技术下做TDD貌似是种挑战，而事实并非如此。

介绍TDD后，我们会在第三部分中详细讨论ATDD。我们会剖析完整的开发过程，了解如何通过使用神奇的用户故事和验收测试为客户交付更多的价值。

希望您旅途愉快！

第2章　TDD入门

 经验是最好的老师，因为实践出真知。

 ——中国谚言

大的机场都会有许多指示牌。无论从哪个机场飞来，我都不会迷路。不知道该怎么走时，只要抬头向上看就能发现类似这样标记：“42号出口：直走。”

当我开始我的程序员生涯时，情况就不太一样了，就好像机场大楼的门口只写着一句话——“祝你好运”。找出应该修改的地方并正确地解决问题，就像在伦敦希思罗机场，没有任何指示牌或路标，让你找到正确的出口一样困难。对于软件开发，TDD及其简单的指导规则就像机场中的各种指示牌一样，能帮我及时到达目的地。

在第1章中，我们已经大致的了解什么是TDD，以及TDD的各个组成部分，例如增量式设计以及“颠倒”的开发周期等。如第1章中所学到的，TDD既是种设计技巧也是种编码技术。TDD的规则相当简单，即写代码只为通过测试。TDD颠倒了常见的“设计—编码—测试”过程，变为其所特有的“测试—编码—重构”过程，如图2-1所示（引自第1章）。

图2-1　TDD周期包括三个步骤：写测试、添加恰巧能让测试通过的产品代码，最后进行彻底的重构以改善设计

TDD简单高效，能开发出高质量软件的技术，并且由于彻底的重构，软件的扩展性总是很好。由于对自己的代码更有信心，代码缺陷率更低，再加上有优良的设计、完备的测试，比起系统上线前没日没夜的加班同时还要应付气愤的客户，我们的工作效率自然更高，心情也更愉快。

在本章中，我们将会深入地了解TDD，讨论其能提高工作效率的原因。我们将会用测试先行的编码方式，通过实践学习TDD。我们将会写许多小的测试，一步步缔造出系统的各种功能行为，同时还会毫无保留地重构。我们会添加代码，删除代码，修改代码以将无用的部分删掉。我们将会编写一个模板引擎，其健壮性和功能随着开发过程会不断提升。这模板引擎起先会有一些基本功能以及错误处理功能，随后会不断扩展。我们也会讨论完成系统的两种途径：“深度优先”和“广度优先”。

本章内容很多，代码也不少，若能认真地阅读，你将会对TDD有更深刻的理解，同时也会学到许多提高开发效率的技巧。

我们马上要用TDD开发真正的软件了。我们将会实现一个模板引擎，用于渲染含有变量的模板，模板中变量的值可以在运行时填入。用TDD开发时，第一步就是编写一个失败的测试，而要编写测试，我们必须要先弄清楚测试的目标，即要实现的功能。所以在着手开发之前，我们先来讨论如何从抽象的需求中提取出具体的测试吧。

2.1　从需求到测试
假设你在开发协作套件系统的一个子系统1，这个子系统支持邮件模板功能，CEO助理只需要点击几下鼠标就能给员工发出个性化邮件了。我们该如何用TDD开发这个系统呢？在本章结束时你就会知道答案。开发任何系统前我们都首先需要分解需求，使其变得更小，更具体，本次也一样。

1 实际上是“邮件系统”的一个更炫的名字。

2.1.1　分解需求

你可能想把现有需求划分成“需要做的事”——也就是任务——完成了这些任务，也就满足了需求。这次不妨换种方式。我们可以把需求分解成一系列测试，通过了所有测试也就满足了所有的需求。你能写出来这些测试吗? 我看没问题。

“若模板中没有任何变量，那么就按照原样发出”，“在贺信中，表示收件人名的变量应该替换成每个收件人的名字”，等等。不久，你就会有很多这样的测试，合起来，就不仅仅是在测试系统的一小部分功能了。最终，你将会用测试覆盖到产品的绝大部分，甚至全部的行为和功能。

为了清楚地说明任务和测试之间的区别，表2-1把邮件子系统分别分解成任务和测试，并进行对比。把需求分解成任务后（左栏），我们很难从所产出软件的角度衡量进度。对比左边的任务栏和右边的测试栏，很明显右栏更能表明软件拥有的功能。

表2-1　邮件模板子系统需求的两种分解结果

 	把模板子系统分解成任务
 	把模板子系统分解成测试

 	写一个正则表达式以确定模板中的变量
 	没有任何变量的模板，渲染前后内容不变

 	实现一个使用正则表达式的模板解析器
 	含有一个变量的模板渲染后，变量应当替换为相应的值

 	实现一个模板引擎。引擎对外暴露一组API，内部实现使用模板解析器
 	含有多个变量的模板渲染后，变量应当替换成相应值

 	…
 	…

把需求转化为测试比转化成任务要好得多，因为像表2-1中的那些任务很容易让人忘记满足用户需求这一最终目标。任务只能提示我们下一步做什么，而没有清晰的“完成”的定义。我们所处的情况就有些尴尬了，就好像买了彩票就声称自己中了大奖一样。

后面我们会见到很多例子，那些例子能充分说明把需求分解成测试的好处。不过在那之前我们还有些其他问题要讨论。

2.1.2　什么是好的测试

虽然大体上测试比任务更能指导我们的工作，但不同的测试编写方法之间区别大吗？当然大。虽然没有一个通用的标准用来衡量“好的测试”，不过我们还是可以依照一些准则来判断测试的优劣的。编写（单元）测试时有许多准则可以遵循2，不过从把需求分解到测试的角度来看，有两点尤为重要：

2 例如“测试之间应该相互隔离，并且不依赖于执行顺序”，“测试应该能快速的执行”，“测试中不应该有手动的初始化工作”，等等。

	好测试是原子化的；

	好测试是独立的。

也就是说，好的测试必须能集中地，原子化地验证待测行为的一小部分。此外测试之间也应该是相互隔离的，测试不该对之前测试的运行结果有任何假设。若能依照原子性准则来编写测试，我们就可以把注意力集中到当前的工作上了，这样就能保证稳健地走好每一步，从而构建出功能齐全，运转良好的完整系统。

只要我们把每一步都表示成毫无歧义的测试，那么每一步和最终目标的联系就会更加紧密清晰了，而且也不易有所遗漏。

在实现功能的每一步中，我们并不是随意写一个测试就开始开发。挑选测试是有一定的技巧的。下面我们一起来讨论。

2.1.3　依照测试的列表工作

有了一个初始的测试列表，我们就可以开始写代码，让测试一个个通过了。首先我们要挑一个测试——通常是我们认为最容易的那个，或者花最少功夫就能取得进展的那个。这时我们要暂时忘记其他测试，只关注选中的测试。下一步该写哪个测试？在第一部分的余下章节，我们会常常遇到这个问题。在TDD过程中，我们每隔几分钟就要做一次这种决定。

那么挑选完测试后该做什么呢？当然是编写测试代码了。在写产品代码之前，我们先要使测试代码通过编译且可执行。不能通过编译，所以没法写测试？不可能为不存在的代码写测试？不，不是这样的。

2.1.4　意图编程

在产品代码存在之前就为其写测试，这听起来有些问题：为了不破坏测试先行的规矩，为一段还不存在的代码写测试？是的，写测试时我们可以假想待测的代码已经存在了。

这怎么可能呢，该怎么想象呢？我们可以站在当前测试的角度来设想产品代码的完美形态。这不是自欺欺人吗？是啊，算是，不过这没有问题。我们在写测试时假设产品代码如我们想象的那般易用，写测试的工作也会变得非常轻松。而且因为产品代码必须要通过测试，所以会和我们想象的一模一样。

这就是想象的力量。这种编程方法还有个名字——意图编程。意图编程，顾名思义，就是说写代码时先假设其他部分代码都已经存在了（即使事实并非如此）。使用这种编程方法时，我们可以把注意力集中在能有的，而不是已经有的东西上。使用意图编程，我们能让代码读起来更流畅，容易理解和使用，也能使代码清晰地表达出自己的本意，而不会过于强调实现细节。

现在我们已经知道了要把需求分解成小的、紧凑的测试，而非分解成任务的原因。我们也了解了意图编程的好处及使用方法。是时间用测试先行的方法开发世界级的模板引擎了。

2.2　选择第一个测试
现在我们要用TDD开发模板引擎了。为了避免同时考虑太多问题，我们会把注意力集中在模板引擎的业务逻辑上，而不会考虑使用模板引擎发送个性化邮件等其他部分。

 提示　我强烈建议你现在就打开最喜欢的IDE（集成开发环境），与我们一道开发模板引擎。虽然在这一章中我会尽量让你了解我们在做什么以及这么做的原因，但是自己动手实践的学习效果是最好的！

我们曾提到过，模板引擎应当能读入一个含有任意变量的静态文本模板，模板中有用特殊语法做标记的变量。在使用模板引擎渲染模板之前填入变量值，模板引擎会做相应的处理。

一切都清楚了吧？开始做吧。我们首先要把对模板引擎的相关描述转化成一系列的测试，然后再选择一个去实现。

2.2.1　创建测试列表

在写出测试列表前我们要先了解需求。本例中，邮件子系统需求如下：

	系统可以使用运行时提供的变量值替换模板中的变量，如${firstname}和${lastname}；

	若系统试图发送一个变量赋值尚未完全的模板，应该报错；

	系统会忽略模板中不存在的变量值；

	系统在模板中支持全拉丁字符集；

	系统在变量值中支持全拉丁字符集；

	……

这些是详细需求，对吧？它们是测试吗？不是。它们是比“实现一个邮件模板子系统”更小，更详细的需求，不过还不是测试。测试通常应该更明确地给定出各种情况下系统的行为，而不仅是给出泛泛地描述。

下面我们尝试着把邮件模板子系统的需求转化为测试。

	对模板“你好，${name}”求值，其中变量name的值为“读者”，结果应当为“你好，读者”。

	对模板“${greeting}, ${name}”求值，两个变量值分别为“你好”及“读者”，结果应当为“你好，读者”。

	对模板“你好，${name}”求值，其中变量name没有相应的值，应当抛出MissingValueError错误。

	对模板“你好，${name}”求值，变量doesnotexist的值为“你好”，name的值为“读者”，结果应当为“你好，读者”。

	等等（例如，我们可以加入一些例子验证系统可以正常处理拉丁字符集）。

看出区别了吧？需求变成了一些更具体、更加可执行、更像例子的东西。有了这些测试作为评判工作完成的标准，我们根本用不着有任何疑问。有了这些测试，我们也不必琢磨“报错”是什么意思。若“报错”抛出一个异常，我们也不用想抛出的异常应当是什么类型，或者该提示什么错误信息等。测试表明我们应当抛出MissingValueError异常，并且错误信息无关紧要。

有了这种测试，我们终于能够放心地回答“任务已经完成了吗？”这种问题了。不过，测试列表本身永远不会结束。测试列表是一个“活”文档，每当我们前进一步，都会加入新的测试。在初始的测试列表中，我们势必会漏掉些测试，而在深入其他测试时，可能会想起这些被遗漏的测试。那时，我们会写下所想到的测试，继续手中的工作。

我们已经有了能明确表明需求的测试列表，接下来我们将使列表中的测试挨个通过。

2.2.2　写第一个失败的测试

在继续TDD旅程前我们先找个例子练习意图编程吧。拿测试列表中的第一个测试为例来学习编码前先测试的方法，如何？

列表中第一个测试为：

对模板“你好，${name}”求值，其中变量name的值为“读者”，结果应当为“你好，读者”。

 注意　我们现在要打开IDE写些代码了。在例子中，我们将会使用JUnit 4，Java 语言的最新标准测试框架。如果你还不熟悉JUnit，请先参照附录中的简介。JUnit本身不是重点，主要目的是实践意图编程，所以只需注意方法中的代码，不用去管那些奇怪的注释语法（annotation）。

因为我们要从测试开始，所以我们先给测试类起个名字，见代码清单2-1。

 代码清单2-1　为测试搭架

public class TestTemplate {
}

接下来加入测试oneVariable，如代码清单2-2所示。

 代码清单2-2　添加测试方法

import org.junit.Test;
public class TestTemplate {
 @Test
 public void oneVariable() throws Exception {
 }
}

进展不错。你能听到风声吗？没听到也没关系，因为我们本来就该小步前进。接下来我们要意图编程了，这部分将会很有趣。发挥想象力，用自己认为最合理的方式设计模板引擎的工作方式，暂时不用考虑具体实现。如此编写出的测试如代码清单2-3所示。

 代码清单2-3　正式开始写测试

import org.junit.Test;
import static org.junit.Assert.*;

public class TestTemplate {
 @Test
 public void oneVariable() throws Exception {
 Template template = new Template("Hello, ${name}");
 template.set("name", "Reader");
 assertEquals("Hello, Reader", template.evaluate());
 }
}

在代码清单2-3的测试方法中，我们把模板文本作为参数传给构造函数，创建出Template对象，然后给变量name赋值，最后调用了evaluate方法，验证结果与期望的是否一致。

怎么样，你认为模板引擎应该这样工作吗？我认为这样没问题。我有些拿不准该给set方法什么名字，也许put更好，因为它和java.util.map接口更一致。不过我想set比put听起来更顺耳，所以先这样吧。让我们继续，看看如何让这段充满想象的代码通过编译。

	通过编译

编译器迫不及待地想要告诉我们，无论意图如何，Template类根本不存在，因此第一步我们要先添加这个类。接着编译器又指出Template类没有一个接受String参数的构造函数，它是在及时提醒你set方法和evaluate方法也不存在，所以继续改动代码1。最终，我们有了代码清单2-4所示的代码。

1 现代的IDE都支持代码产生的功能，能让测试驱动工作更轻松。

 代码清单2-4　为通过编译而添加的空方法和构造函数

public class Template {
　
 public Template(String templateText) {
 }
　
 public void set(String variable, String value) {
 }
　
 public String evaluate() {
 return null;
 }
}

代码能编译了。接下来做什么？当然是运行测试了。

	运行测试

当我们运行这个刚写成的测试时，测试会失败——这一点也不奇怪，因为我们还没实现这些方法。（你没做实现，对吧？）

我喜欢在这种时候运行测试，眼看着测试失败。因为我想确认在IDE中点了“运行”按钮后，测试真的运行了。这可能会让你感到困惑，不过我确实认为这种方法很实用。此外，若测试失败了，我们还能够确认功能真的不存在，但若测试恰巧通过了，则说明这块功能实际上已经有了。

 失败的测试也是进度

 你可能认为目前我们的工作尚无任何实质性的进展，因为一行实现代码都还没写，但事实并非如此。我们现在已经有了测试，它能明确地告诉我们当前任务是否已经完成。不会太早，也不会太晚。它不会对我们说“你已完成90%了”，或者“马上就完成了，再坚持五分钟”这种模棱两可的话。若测试通过，我们就明确地知道代码现在已经可以正常工作了。

 你现在可能觉得我讲的没道理。不过我相信你终究会理解的，而且也会体会到这种思路的转换所带来的改变。不过这种改变会因人而异，因为毕竟每个人都有所不同。在本书的前半部分我们将会用测试先行的方法写很多的代码，所以你会有很多机会检验这种方式是否真的实用。

运行测试，结果如图2-2所示。我们期望得到字符串“你好，读者”，但却得到了空指针。

图2-2　我们第一个失败的测试，值得纪念。图中为Eclipse的JUnit Runner，不过几乎所有主流IDE都会显示类似的红条以及测试的层次结构，也能提供详细错误信息，失败测试的栈跟踪信息（stack trace）等

我们正处在TDD周期中“红”的阶段，因为刚才有测试失败了，这在IDE中用一个红色的条来表示。我们已经用意图编程方法写好了一个测试，也有了一些基本的产品代码。下一步就该实现Template类，让测试通过了。

2.2.3　通过第一个测试

虽然还没有写多少代码，但我们已经做了很多重要的设计决策。我们决定该有个Template类，通过构造函数的参数装载模板文本，能给模板变量赋值，并且可以做求值操作，产生期望的输出。下一步我们该做什么呢？

现在Template类已经有了基本的结构了（如代码清单2-5所示），测试也能编译成功。

 代码清单2-5　为了通过编译，暂时不实现Template类的各个方法

public class Template {

 public Template(String templateText) {
 }

 public void set(String variable, String value) {
 }

 public String evaluate() {
 return null;
 }
}

为了能通过编译，我们给Template类添加了构造函数及几个方法，不过它们还什么都没做。我们写了一个失败的测试指出下一步该做的事情，也添加了足够的产品代码让测试编译通过，剩下就该添加功能让测试通过了，这是最费脑力的部分。

不过我们不仅是要通过测试，而且是要用最简单快捷的方法通过测试。当前测试失败了，我们正处在“红”的状态，表明代码的健康状况不佳，这时我们要尽快通过测试以摆脱这种状态。

那么，哪种方法可以最简便快捷地通过测试呢？要对“你好， ${name}”这么简单的模板求值，用字符串替换操作来实现，几分钟就能完成。不过，还有一种实现方法既能满足测试的需要，也可以达到我们“越快越好”的目的，见代码清单2-6。

 代码清单2-6　用硬编码的返回语句，使测试尽早通过

public class Template {

 public Template(String templateText) {
 }

 public void set(String variable, String value) {
 }

 public String evaluate() {
 return "Hello, Reader"; // 还有比这更简单的吗
 }
}

为了节省空间，从现在起所有测试代码都会省掉两条import语句，访问JUnit库时记得加上。

硬编码求值方法，返回“你好，读者”。是的，我没开玩笑。这是通过测试的最简单快捷的方法了。虽然起初这样做看上去没什么道理，但是确实可以帮我们用测试驱动出正确实现。

目前我们既没用真实的变量，也没用模板，因此至少可以从这两个维度同时向正确实现推进。我们来继续写测试，驱动出正确的实现。

2.2.4　再加一个测试

首先要去除硬编码的变量名。为此我们可以在当前测试基础上加一个断言，如代码清单2-7所示。

 代码清单2-7　用另一个测试消除硬编码的返回语句

public class TestTemplate {
 @Test
 public void oneVariable() throws Exception {
 Template template = new Template("Hello, ${name}");
 template.set("name", "Reader");
 assertEquals("Hello, Reader", template.evaluate());
 }

 @Test
 public void differentValue() throws Exception {
 Template template = new Template("Hello, ${name}");
 template.set("name", "someone else"); 多行：/*（以下2行）用另一个值做三角定位*/
 assertEquals("Hello, someone else", template.evaluate());
 }
}

在测试中，我们又调用了一次set方法，不过这次参数值不同。我们还添加了一个断言，验证Template对象会用name变量的最新值再次对模板求值。这时硬编码的值显然没法通过测试了，这正是我们的目的。

这种方法有个很贴切的名字—— “三角法”，表明这个方法会从多个方向同时入手，共同确定出恰当的实现。我们可以称之为“找茬”（playing difficult），不过它真的可以帮助防止过早优化、功能蔓延2以及总体上的过度设计。

2 维基百科全书将这一词汇解释为：软件过分强调新的功能，以至于损害了其他的设计目标，例如简洁性、轻巧性、稳定性及错误出现率等。——译者注

现在，怎么才能让这个测试通过呢？有什么办法可以避免解析模板吗？我想可加入更多的硬编码规则，再次推迟真实的实现。试试看吧，代码如代码清单2-8所示。

 代码清单2-8　保存并返回赋给变量的值，使测试通过

public class Template {

 private String variableValue;

 public Template(String templateText) {
 }

 public void set(String variable, String value) {
 this.variableValue = value;
 }

 public String evaluate() {
 return "Hello, " + variableValue;
 }
}

我们再次相当省事地让测试通过了。这种实现方式显然还不够好，因为硬编码仍旧存在，所以我们应当继续使用三角法清理掉代码中最后剩下的一个字符串。下面接着修改代码，以清除硬编码的变量值及变量周围的模板文本，如代码清单2-9所示。

 代码清单2-9　对静态模板文本应用三角法

public class TestTemplate {
 @Test
 public void oneVariable() throws Exception {
 Template template = new Template("Hello, ${name}");
 template.set("name", "Reader");
 assertEquals("Hello, Reader", template.evaluate());
 }

 @Test
 public void differentTemplate() throws Exception { // 重命名测试，使其与所做工作相匹配
 Template template = new Template("Hi, ${name}");
 template.set("name", "someone else");
 assertEquals("Hi, someone else", template.evaluate()); // 清除更多硬编码
 }
}

红条。显然硬编码的返回语句不再能满足需求了。这时我们必须要用某种方式解析模板了。接下来我们先实现解析逻辑，稍后再看这个测试，如何？

下面我们来讨论深度优先和广度优先。

2.3　广度优先，深度优先
现在我们构造的软件规模并不小，不可能在几小时内完成。我曾经参与开发的一个系统有上万行代码，另外一个系统甚至有100万行代码。还有不少人开发或维护的系统代码居然有几百万行之多。吞下整块的松饼很可能会噎着，一次试图把所有的代码都写完往往也会事倍功半。

在模板引擎例子中，我们正好遇见了一块松饼大小的，尚未处理的复杂逻辑。若不先处理好这块逻辑，我们就没法让模板求值的测试通过。

你可能还记得，算法课中曾经教过遍历树有两种方法，一种为广度优先遍历，另一种为深度优先遍历，做TDD时也一样（至少部分如此）。图2-3和图2-4对比了这两种实现方法。

我们可以采用广度优先的方式，先针对Template类的公共接口写测试，然后使用内部和底层功能的伪实现让测试通过，接着再去给下一层的功能写测试，见图2-3。

图2-3　若采用广度优先的方式，我们会集中实现高层的功能，实现过程中会暂时使用底层功能的伪实现

我们还可以暂时删掉当前测试以回到“绿”的状态，然后开始给模板解析逻辑写测试。模板解析功能完成后再回到删掉的那个测试，重新开始。这就是深度优先方式，纵向地实现功能的所有细节，一步步向前推进，如图2-4所示。

图2-4　若采用深度优先的方式，我们会先实现底层功能，在所有底层功能都实现完后才会组合来实现出高层功能

要让模板引擎处理Hello, ${name}，我们可以先用底层功能（即解析模板功能）的伪实现，在此基础上继续添加功能，看看以后会遇到什么情况。

2.3.1　继续使用伪实现

首先我们要保存变量值和模板文本，也要在evaluate方法中用变量值替换掉模板文本中的变量。代码清单2-10中为具体实现。

 代码清单2-10　初次尝试真正的处理变量

public class Template {

 private String variableValue;

 private String templateText;

 public Template(String templateText) {
 this.templateText = templateText;
 }

 public void set(String variable, String value) {
 this.variableValue = value;
 }

 public String evaluate() {
 return templateText.replaceAll("\\$\\{name\\}", variableValue);
 }
}

可能会有人认为这样是作弊，因为我们仍旧硬编码了查找${name}的正则表达式。但这不是真的作弊。我们没有抱着“赶紧写完代码了事”的态度工作。小步前进，还记得吗？最终会实现所有功能的。现在所有的测试都通过了，实现全部功能完全没问题。下一步我们该做什么呢？

该进行重构了。你认为哪里需要重构？看见了令人讨厌的重复了吗？有没有不理想的代码结构？至少我没发现，所以我打算继续增加测试。现在是时候消除那个硬编码的变量名了，在模板中引入多个变量恐怕是最好的消除方法。

2.3.2　清除掉伪实现

是为多变量模板写测试的时候了。顺便提一句，这是我们测试列表中的第二个测试了，进度不错吧。接下来在测试类中添加如下代码：

@Test
public void multipleVariables() throws Exception {
 Template template = new Template("${one}, ${two}, ${three}");
 template.set("one", "1");
 template.set("two", "2");
 template.set("three", "3");
 assertEquals("1, 2, 3", template.evaluate());
}

这个测试现在会失败，因为evaluate方法原样返回了模板文本，而不是“1，2，3”（这一点也不奇怪，因为硬编码的正则表达式只会查找${name}）。如何处理模板中增加的变化是个大问题。

要最快地通过测试，我们可以查找替换模板中的所有变量。虽然这种方法效率不高，而且处理变量名中包含类似${variable}的字符串可能会有问题，不过目前是足够了。通常我会把代码中任何可能的问题或者缺陷都写成新测试加到测试列表中，比如现在这个正则表达式：

对模板“${one}，${two}，${three}”求值，其中变量值分别为“1”、“${foo}”以及“3”，验证模板引擎渲染结果为“1，${foo}，3”。

当我们在写一个测试时，如果发现功能实现的不正确，或者整块缺失等问题，可以先把问题记下来，继续手中的工作。这样我们可以集中注意力完成一项任务，而不是在几项任务间来回切换，徒然增大脑负担（而且这种过程还有可能使代码质量下降）。

现在，我们看看怎样用查找替换方法让当前测试通过。

	新的更加完善的细节

用查找替换方式实现功能后（见代码清单2-11），我们回到了“绿”的状态。

 代码清单2-11　用查找替换处理多变量

import java.util.Map;
import java.util.HashMap;
import static java.util.Map.Entry;
　
public class Template {
　
 private Map<String, String> variables; // 用散列表存储变量
 private String templateText;
　
 public Template(String templateText) {
 this.variables = new HashMap<String, String>(); // 用散列表存储变量
 this.templateText = templateText;
 }
　
 public void set(String name, String value) { /*（以下3行）用散列表存储变量*/
 this.variables.put(name, value);
 }
　
 public String evaluate() {
 String result = templateText;
 for (Entry<String, String> entry : variables.entrySet()) { // 遍历变量
 String regex = "\\$\\{" + entry.getKey() + "\\}"; /*（以下2行）用变量值替换变量*/
 result = result.replaceAll(regex, entry.getValue());
 }
 return result;
 }
}

测试都通过，不错。下一步做什么？重构！不过我还是没发现有什么可重构的，所以我们再次跳过这一步，写下一个测试。

测试列表中还剩下这些测试：

	对模板“你好，${name}”求值，其中变量name没有相应的值，结果应当抛出MissingValueError错误；

	对模板“你好，${name}”求值，其中变量doesnotexist的值为“你好”，“name”的值为“读者”，结果应当为“你好，读者” ；

	对模板“${one}，${two}，${three}”求值，其中变量值分别为1、${foo}以及3，验证模板引擎渲染结果为“1，${foo}，3”。

我猜现在第二个测试应该已经可以通过了，来试试看。

	针对特殊情况的测试

在下面这个测试中，我们会验证若给模板文本中不存在的变量设值，值会被模板类忽略。我猜当前的实现已经可以完美地通过测试了，不用做任何的修改。

@Test
public void unknownVariablesAreIgnored() throws Exception {
 Template template = new Template("Hello, ${name}");
 template.set("name", "Reader");
 template.set("doesnotexist", "Hi");
 assertEquals("Hello, Reader", template.evaluate());
}

测试确实通过了。

IDE运行测试太快了，有时我甚至不确定测试究竟执行了没有，因此我总会先执行一遍测试，让测试失败，然后做实现，让“红”条变成“绿”条。换句话说，首先故意让测试失败，是为了确认测试执行时出现了错误，也就是说新添加的测试确实执行了，只有这时候我们才去做实现，让指示条重新变绿。

 提示　大部分现代IDE用代码模板产生代码。我在Eclipse的“test”模板中添加了一条抛出RuntimeException异常的语句，异常信息为“尚未实现”。每个用Ctrl + Space快捷键产生的测试都会包含这条语句。这样不仅能节约时间，还能提醒我先运行一遍测试。

现在代码确实通过新测试了，没做任何修改。如果所有的开发都这么简单那该多好啊。虽然天上不会总掉馅饼，但是时常有个甜点吃也不错，对吧？

让我们继续，现在又到了重构的时候了。

2.4　别忘了重构
我们写了很多的代码，但还不曾作过重构。这是因为我们一直没有发现需要重构之处。现在还不需要做重构吗？或许不需要，因为并没有添加任何新的产品代码，对吗？不对。虽然我们没有添加任何产品代码，但是加了测试代码。测试代码和产品代码同等重要，我们最好别让它慢慢“腐烂”，因为这将在后来给我们带来很大麻烦。

我们首先看看测试代码中有什么可重构之处，然后选择几处进行重构。代码清单2-12是我们现在的测试代码。

 代码清单2-12　目前的测试代码——可以做哪些重构

public class TestTemplate {

 @Test
 public void oneVariable() throws Exception {
 Template template = new Template("Hello, ${name}");
 template.set("name", "Reader");
 assertEquals("Hello, Reader", template.evaluate());
 }

 @Test
 public void differentTemplate() throws Exception {
 template = new Template("Hi, ${name}");
 template.set("name", "someone else");
 assertEquals("Hi, someone else", template.evaluate());
 }

 @Test
 public void multipleVariables() throws Exception {
 Template template = new Template("${one}, ${two}, ${three}");
 template.set("one", "1");
 template.set("two", "2");
 template.set("three", "3");
 assertEquals("1, 2, 3", template.evaluate());
 }

 @Test
 public void unknownVariablesAreIgnored() throws Exception {
 Template template = new Template("Hello, ${name}");
 template.set("name", "Reader");
 template.set("doesnotexist", "Hi");
 assertEquals("Hello, Reader", template.evaluate());
 }
}

花点儿时间考虑如何提高测试代码质量。重复，语义冗余，任何有问题的点，任何可做清理的。我们马上将会讨论几个潜在的重构动作，但你最好能先考虑代码中存在的“坏味道”。当你做好准备后，我们将继续。

2.4.1　测试代码中的可重构之处

这段代码存在几个问题。首先，所有的测试都使用了Template对象，所以我们最好能把它提取为成员变量，而不是在每个方法中都重复声明一遍。其次，所有的测试都把evaluate方法的返回值作为assertEquals方法的参数。再次，两处代码在创建Template对象时使用了同样的模板文本，最好能想办法消除这种重复。

不过，有一个测试使用了不同的模板文本。我们应该给每个模板文本都创建一个实例变量吗？若是这样，我们或许应该把测试类拆分成两个，每个都有自己清晰的夹具变量。

 注意　若你还不清楚什么是夹具（fixture），我们可以做个介绍。夹具实际上是为测试准备的一系列的对象状态。在JUnit中，夹具就是测试类的一些成员变量及其他的配置好的状态。我们在第4章中会更详细地讲解夹具，不过现在可以把它当成同一个测试类中所有测试方法共享的初始状态。

除了拆分TestTemplate类外还有其他的重构方法，下面我们来讨论。

2.4.2　移除多余的测试

在oneVariable、differentTemplate和multipleVariables测试中存在一个非常明显的重复。想想看，最后一个测试中实际上已经包含了第一个测试，所以如果我们能新加个测试，验证给某个变量设新值后可以重新对模板求值，那么我们完全可以删除那个单变量模板的测试。此外，还可以让unknownVariablesAreIgnored测试使用multipleVariables测试中的模板文本。另外，我不认为differentTemplate测试还有存在的必要，所以也删了吧。

重构后的代码如代码清单2-13所示。

 代码清单2-13　移除冗余测试及统一fixture后的测试代码

import org.junit.Test;
import org.junit.Before;
import static org.junit.Assert.*;

public class TestTemplate {

 private Template template; // 所有测试共有的夹具

 @Before
 public void setUp() throws Exception {
 template = new Template("${one}, ${two}, ${three}"); /*（以下4行）所有测试共有的夹具*/
 template.set("one", "1");
 template.set("two", "2");
 template.set("three", "3");
 }

 @Test
 public void multipleVariables() throws Exception {
 assertTemplateEvaluatesTo("1, 2, 3"); // 简单紧凑的测试
 }

 @Test
 public void unknownVariablesAreIgnored() throws Exception {
 template.set("doesnotexist", "whatever"); /*（以下2行）简单紧凑的测试*/
 assertTemplateEvaluatesTo("1, 2, 3");
 }

 private void assertTemplateEvaluatesTo(String expected) {
 assertEquals(expected, template.evaluate());
 }
}

你也看见了，我们可以使测试共享模板文本和初始化过程（setup）1，使测试方法本身轻快短小，仅仅关注要测试的业务逻辑。

1 JUnit会在执行每个标着@Test方法前执行标有@Before的方法。

不过，现在该继续写测试，添加新功能了。目前，我们的模板引擎已经有了基本的功能，下一步应该考虑添加错误处理功能了。

2.5　添加错误处理
我们接着添加测试吧。目前列表中剩下的唯一测试是：若模板中存在未被赋值的变量，evaluate方法应当报错。我们还是会先写一个测试，接着实现功能使测试通过，最后重构出理想的设计。

现在，我们来考虑模板引擎对缺失的变量值的处理方式吧。

2.5.1　验证异常

如何在JUnit中验证异常呢？当然是使用try-catch 结构了，不过这次出现异常是好事，是我们期望的行为。代码清单2-14中是JUnit中测试异常的常见的模式1。

1 见J. B. Rainsberger所著的JUnit Recipes（Manning Publications，2005）一书中的技巧2.8。

 代码清单2-14　测试异常

@Test
public void missingValueRaisesException() throws Exception {
 try {
 new Template("${foo}").evaluate();
 fail("evaluate() should throw an exception if "
 + "a variable was left without a value!");
 } catch (MissingValueException expected) {
 }
}

注意，在evaluate方法后我们调用了fail方法。org.junit.Assert#fail意思是“如果执行到这一步，那么一定是出了错误”，这时fail方法会使测试失败。不过倘若evaluate方法抛出了异常，且异常类型正确，那么我们会捕获这个异常然后忽略之，否则会任JUnit处理这个异常，测试会失败。

 使用注释语法测试异常

 JUnit 4带给我们一个方便的，基于注释语法的异常测试方法（例如测试代码清单2-14中的missingValueRaiseException）。若使用注释语法语法，测试可以改写成：

@Test(expected=MissingValueException.class)
public void testMissingValueRaisesException() throws Exception {
 new Template("${foo}").evaluate();
}

 虽然这个基于注释语法的测试看起来比try-catch结构的测试精炼，不过使用try-catch，我们能够验证异常的更多信息（例如其中包括的关键错误信息）。有些人喜欢使用注释语法，另一些人总是偏好使用try-catch模式。我在只测试异常类型时使用注释语法，希望发掘出更多的信息时使用try-catch模式。

好了，我们有了一个失败的测试。现在还不能通过编译，不过添加一个空的MissingValueException类就行了：

public class MissingValueException extends RuntimeException {
 // this is all we need for now
}

指示条再次变红，准备让测试通过吧，找出检查缺失变量值的方法。

我们再次要想方设法让测试快速通过。在evaluate方法中，如何能判断出模板文本变量尚没有对应的变量值？检查输出中类似变量的片断是我现在能想到的最简单的方法了。这方法算不上健壮，不过目前足够了，实现也很容易。

实现代码如代码清单2-15所示。

 代码清单2-15　在查找替换操作完成后，检查未处理的变量

public String evaluate() {
 String result = templateText;
 for (Entry<String, String> entry : variables.entrySet()) {
 String regex = "\\$\\{" + entry.getKey() + "\\}";
 result = result.replaceAll(regex, entry.getValue());
 }
 if (result.matches(".*\\$\\{.+\\}.*")) { // 貌似这里缺了个变量？
 throw new MissingValueException();
 }
 return result;
}

又由红变绿了。这次需要重构吗？我认为暂时不用，不过evaluate方法的代码体积有些大了。“大？就那点儿代码？”，我想是的，该重构了。

2.5.2　把方法重构得更短些

方法、类等的大小，每个人都有自己的偏好。我个人习惯每个方法内少于10行Java代码2。只要超过了这个限度，我就会开始琢磨是否有东西可以丢掉，或者移到其他地方。现在evaluate方法所做的事有些多了，既要替换变量值，又要检查缺失的值。

2 也可以用McCabe 来衡量方法是否过大，此外长的方法的复杂性也会很高。

让我们来做些重构，让evaluate方法变得更简洁吧。我们至少可以把缺失变量值的检查抽取到单独的方法中去。代码清单2-16对evaluate方法进行了重构。

 代码清单2-16　把检查缺失变量的逻辑抽取到一个方法中

public String evaluate() {
 String result = templateText;
 for (Entry<String, String> entry : variables.entrySet()) {
 String regex = "\\$\\{" + entry.getKey() + "\\}";
 result = result.replaceAll(regex, entry.getValue());
 }
 checkForMissingValues(result); // 噢万岁！终于把evaluate()中所有的if - block都处理掉了
 return result;
}

private void checkForMissingValues(String result) {
 if (result.matches(".*\\$\\{.+\\}.*")) {
 throw new MissingValueException();
 }
}

已经好多了，不过还可以改进。从evaluate方法中抽取出检查缺失变量逻辑时，我们破坏了evaluate方法的抽象层次，evaluate方法不再如我们期望的那般平衡了。在继续做实现之前，我们先讨论一下平衡吧。

2.5.3　保持方法平衡

保持方法中的代码抽象层次的一致性会影响到代码的可读性。以evaluate方法为例说明：

public String evaluate() {
 String result = templateText;
 for (Entry<String, String> entry : variables.entrySet()) {
 String regex = "\\$\\{" + entry.getKey() + "\\}";
 result = result.replaceAll(regex, entry.getValue());
 }
 checkForMissingValues(result);
 return result;
}

evaluate方法做了两样事：用变量值替换变量，以及检查缺失的变量值，两件事的抽象层次完全不一样。比起checkForMissingValues方法调用，循环结构显然包含了太多细节。要添加点新功能很容易，只需要在现有的函数中直接添加代码即可，但如果忽略了抽象层次的一致性，代码很快就会变得一团糟。

不过还好，只需用“提炼函数”重构手法就能解决问题，如代码清单2-17所示。

 代码清单2-17　从evaluate方法中抽取出另一个方法

public String evaluate() {
 String result = replaceVariables(); /*（以下2行）Evaluate()方法内部更平衡*/
 checkForMissingValues(result);
 return result;
}

private String replaceVariables() { /*（以下8行）新方法很简单，目标也清晰明确*/
 String result = templateText;
 for (Entry<String, String> entry : variables.entrySet()) {
 String regex = "\\$\\{" + entry.getKey() + "\\}";
 result = result.replaceAll(regex, entry.getValue());
 }
 return result;
}
private void checkForMissingValues(String result) {
 if (result.matches(".*\\$\\{.+\\}.*")) {
 throw new MissingValueException();
 }
}

运行一遍测试，重构没有破坏任何功能，不错。如果没有测试做后盾，这些重构的工作量可不小。实际上，若没有测试，我们可能完全不会做重构的。

所有测试都通过了，不错。不过异常处理部分还没完全做完，在处理缺失变量值时最好能提供有意义的异常信息。

2.5.4　验证异常中的详细信息

在缺失变量的测试中我们只验证了MissingValueException异常，这样是不够的。我常常见到意义很含糊的异常3，也常常背地里骂那些不提供有用信息的开发人员。在这种情况下，我们应该在异常信息中说明所缺值变量的名称，见代码清单2-18。

3 “java.lang.NullPointerException: null”这种信息有什么用呢？

 代码清单2-18　测试异常

@Test
public void missingValueRaisesException() throws Exception {
 try {
 new Template("${foo}").evaluate();
 fail("evaluate() should throw an exception if "
 + "a variable was left without a value!");
 } catch (MissingValueException expected) {
 assertEquals("No value for ${foo}", /*（以下2行）应提供缺失值的变量的名称*/
 expected.getMessage());
 }
}

这次我们还是要让测试在几分钟内通过。我们打算使用java.util.regx API提供的功能来找出渲染结果中能够与变量模式匹配的部分。也许用代码可以表述的更清楚些：

import java.util.regex.Pattern;
import java.util.regex.Matcher;
private void checkForMissingValues(String result) {
 Matcher m = Pattern.compile("\\$\\{.+\\}").matcher(result);
 if (m.find()) {
 throw new MissingValueException("No value for " + m.group());
 }
}

当然我们也需要为MissingValueException类添加一个构造函数：

public class MissingValueException extends RuntimeException {
 public MissingValueException(String message) {
 super(message);
 }
}

完成了。几分钟前，我们想到了一个测试，然后立即动手做了实现。不过若测试工作量相对较大，我们最好先把它加到测试列表中，稍后再着手做。提到测试列表，或许我们现在应该更新测试列表了。

2.6　无穷尽的测试
最初列出的几个测试现在已经都做完了。在实现的过程中，我们也发现了一些问题。其一，我们没有处理好变量值中包含“${”及“}”等字符串的情形。另外我还有些担心模板引擎的效率。算上性能测试，列表中还剩下如下测试：

	对模板“${one}，${two}，${three}”求值，其中变量的值分别为“1”、“${foo}”以及“3”，验证模板引擎渲染结果为“1，${foo}，3”；

	若模板包含100个词、20个变量，且每个变量值长度大约为15个字符，求值所需时间应在200毫秒内。

当我们想到新的测试时，应该直接加到列表中，以免忘记。不要放下手中的工作立即去做新的测试，我们不能让新测试打乱工作的节奏。先把新测试记下来，继续手中的工作，稍后再去处理新的测试。

而现在，我们手中并没有其他工作，所以可以直接去处理这些测试了。先看性能测试，然后再处理重复渲染问题，如何？

2.6.1　性能测试

模板引擎的性能如何？我们可以给evaluate方法添加一个性能测试，看看执行时间是否合理。代码清单2-19中的测试类用于检测程序的性能。

 代码清单2-19　写个性能测试作为预警系统

import org.junit.Test;
import static org.junit.Assert.*;

public class TestTemplatePerformance {

 // Omitted the setUp() for creating a 100-word template
 // with 20 variables and populating it with approximately
 // 15-character values

 @Test
 public void templateWith100WordsAnd20Variables() throws Exception {
 long expected = 200L;
 long time = System.currentTimeMillis();
 template.evaluate();
 time = System.currentTimeMillis() - time;
 assertTrue("Rendering the template took " + time
 + "ms while the target was " + expected + "ms",
 time <= expected);
 }
}

Template目前的性能还不错，渲染一个含有100个词、20个变量的模板需要大约100毫秒。有了这个测试，若模板引擎因为某些原因变得的过慢了，我们会立即发现。

这种测试方式当然不是完美无缺的。因为我们并不是在真空中执行测试，若测试依赖于执行时间，那么总不会太稳定。测试可能在这个计算机上通过，而在那个计算机上失败，而且在同一台计算机上也可能时而成功时而失败，取决于同时运行的其他的软件在做什么类型的运算。随机失败的测试是不可接受的，因此必须要解决这个问题。不过大多数情况下，我们可以微调测试，使其不会总随机失败，但同时又能及时发现性能问题。

现在先不用考虑这些，下面我们来处理待渲染的变量的值与变量有一样格式的重复渲染问题吧。

2.6.2　有些失望的结局

接下来我们要处理变量值包含“${”及“}”等字符串的情况了，这看起来有些困难。首先，我们不能用赋给模板的变量值一遍遍地做查找替换操作，因为一些先被渲染的变量值可能会被后续的查找替换操作重新渲染，变成完全不同的值。另外，我们也不能通过查找输出字符串中的“${…}”来判别是否存在未设值的变量。

在进行下一步前，我们先不要过多的猜测了吧，写一个测试来检测当前代码行为。把下面的测试加入TestTemplate类中：

@Test
public void variablesGetProcessedJustOnce() throws Exception {
 template.set("one", "${one}");
 template.set("two", "${three}");
 template.set("three", "${two}");
 assertTemplateEvaluatesTo("${one}, ${three}, ${two}");
}

这个测试确实能够测出问题。evaluate方法的正则表达式部分抛出了IllegalArgumentException异常，提示“非法组应用”，说明代码的确没有正确处理这种情形。我想现在应该重新考虑一下那个测试，拿个记事本打点草稿了。不过，我们先对这章做个回顾，休息一会儿，在下章中再处理重复渲染问题吧。

2.7　小结
TDD技术很强大，能帮助我们更高效地写出高质量的软件。使用TDD时，我们会把注意力集中在当前需要做的事情上，让当前部分能正常地工作，最后清理实现过程中可能产生的各种杂乱的代码，保证代码的高质量。在TDD的编写测试，写代码以通过测试，最后重构的整个周期中，我们会常常用到意图编程，即写测试时假设实现已经存在了，这种编程方法能让设计的可用性更高，测试性更好。

在本章中，我们真正地使用了TDD，按照TDD所定义的周期进行工作，不过后来发现当前模板引擎的设计不够健壮。我们在写模板引擎时罗列了一些测试，用于说明引擎的行为，而且在整个开发过程中都坚持采用测试—编码—重构的步骤1。现在的代码已经能够满足大部分的需求了，足以满足许多场合的需要。有测试做后盾，我们进展的速度会更快，也不用担心重构会破坏掉现有功能。

1 如果你没有严格地遵循，我能原谅你。有时候我也会。不过欠下的债总要换的，麻烦通常就在后面等着，这时候我们才能更好地理解TDD所带来的优点。我相信你也会越来越接受TDD的。

现在我们开始学习下一章吧，看看如何处理剩下的问题，把模板引擎变成一个功能完整、设计优美的产品！

第3章　小步重构

 只有经过不断的简化和提炼，才能得到最强大的设计。

 ——凯文·穆雷特，Designing Visual Interfaces: Communication Oriented Technigues

在上一章中，我们用TDD实现了一个模板引擎。虽然基本上是从零开始，但实现的代码却非常有用。事实上，我们只写了少得令人惊讶的代码，就达到了如此效果。看看Template类有多么短，那些有多年瀑布式开发经验，习惯事先设计的人可能会感到出乎意料。当然也有可能只有我感到惊讶，其他人已经有了更好的设计。

在模板文本中用正则表达式查找变量确实有一定的问题。不过，遇见问题正是做设计的好机会。用测试先行的方法做开发时，大多数时间都没什么挑战。倘若遇到一些困难，反而会让人精神一振，解决问题过程中还能充分地发挥想象力。在本章中，我们将会学习用小的、受控的步骤引入大的设计变化。

在本章的开始部分，我们会学习一种名为Spike的研究问题的方法。Spike基本上是一种是以实验为目的的原型方法，目的是为了研究某个解决方法的可能性和可行性。在清楚地了解Java正则表达式API是否能解决当前问题后，我们就可以试着实现解析器了。

我们也将会重构模板引擎的代码。重构完成后，就能很容易地用新解析器替换现有解析逻辑了。在模板引擎中引入模板解析器后，我们将继续深入重构，把代码中隐含的类型提升为设计中的显式的主要概念。

现在开始吧。

3.1　探寻解决方案
你已经想过如何解决重复渲染问题了吗？倘若没有，现在花些时间考虑吧。

考虑完了吗？好。你刚才做了些什么？在纸上打草稿？临时写了段Java代码，想弄清楚如何使用Java正则表达式的API？在Google上搜索？或在Java文档中寻求答案？或者想抛弃正则表达式，另找出路？在TDD的过程中，我们常常需要确定某个方法的可行性，或试着找出问题的最佳解决方法，在极限编程中，这个过程称为Spike。

3.1.1　用Spike开发原型

遇到问题时，放松一下，准备克服困难。这时候我们需要深入研究潜在的解决方案，可能是很新的技术，也可能是非常古老的API，也许是比当前方法更经济可行的算法。Spike算是一个小1的实验，目的在于让我们掌握解决当前问题所需要的技术、工具、算法，等等。Spike的主要目的是学习知识，通过Spike，我们至少要弄清楚目前解决方法是否值得继续研究，还是要换一种解决方案。

1 这里的“小”是相对的，大部分Spike都会用去15分钟到几个小时，一个TDD周期只会用去几秒钟或者几分钟时间，而不是几个小时。

有些人在做Spike时不会测试先行，而有些人会。测试先行的编码方式能带来许多好处，在做Spike时为何不用这种编码方式呢？不过我们要注意，不能把Spike时写的代码直接贴到产品代码中。因为要保持代码的高质量，因此每写一部分代码都需要测试先行。复制产品代码可不好，我们要应用Spike中学到的知识来写代码，让代码质量维持在很高的水平。

现在，我们来看看做Spike的方式吧。我们会先写一个学习测试（learning test）来学习Java正则表达式API，然后再试着应用学到的知识。开始吧。

3.1.2　写测试学知识

我们写到哪里了？哦，想起来了。模板引擎存在问题，不能正确处理类似于变量名的变量值，有测试为证。也许我有些固执，不过我仍旧认为选择正则表达式没错，Java正则表达式API（java.util.regex）或许真的可以很漂亮地解决这个问题。

研究API如何工作，是否能为我所用之类的小Spike， 学习测试就能够胜任。学习测试目的在于验证对API的理解是否正确，这些测试是学习使用类库的最佳示例。写几个学习测试弄明白Java正则表达式API，或许就能找到修复那个测试的好方法。

加载模板时，把模板解析成纯文本片断和变量片断，然后再按顺序对这些片断求值，最后用StringBuilder把求值结果拼接起来，这办法怎么样？例如，模板“${first} and ${second}”在解析后将会产生如下序列：变量片断first、纯文本片断and以及变量片断second。逐个对这些片断求值，一定能解决重复渲染问题。

先来写些学习测试，学习使用正则表达式API吧。

3.1.3　学习API的Spike样例

Java.util.regex.Matcher类提供一个名叫groupCount的方法。我记得在Java正则表达式中，“子表达式”表示圆括号包围的文本，可以一试。我们用下面的测试验证对API的理解是否正确：

public class RegexLearningTest {
 @Test
 public void testHowGroupCountWorks() throws Exception {
 String haystack = "The needle shop sells needles";
 String regex = "(needle)";
 Matcher matcher = Pattern.compile(regex).matcher(haystack);
 assertEquals(2, matcher.groupCount());
 }
}

测试失败了，因为我以为groupCount方法会返回文本中子表达式的匹配次数，而实际上groupCount方法会返回正则表达式自身包含的子表达式数目（请别问我为什么）。还好，至少我能及时发现问题。

仔细地阅读完java.util.regex.Matcher文档后，我发现了如下解释：“find方法扫描输入序列，查找下一个匹配的子串”。此外文档中还提到：

（这个方法）会试图找出输入序列中能够匹配模式的下一个子序列。这方法从输入序列的头部开始扫描。倘若上次对这方法的调用执行成功，且matcher对象尚未重置，那么方法将从上次第一个未能匹配的字符开始扫描。如果匹配成功，调用start、end和group方法可以获取更多信息。

现在我们再写些学习测试，试着用find方法找出所有匹配的片断。

依我对文档的理解，find方法会扫描至第一个needle文本片断，由于查找成功了，返回值应当为true。用个测试来验证吧：

@Test
public void testFindStartAndEnd() throws Exception {
 String haystack = "The needle shop sells needles";
 String regex = "(needle)";
 Matcher matcher = Pattern.compile(regex).matcher(haystack);
 assertTrue(matcher.find());
}

测试通过。接下来，我们应该可以调用start和end方法取得相关字符的位置。为此也添加个断言：

@Test
public void testFindStartAndEnd() throws Exception {
 String haystack = "The needle shop sells needles";
 String regex = "(needle)";
 Matcher matcher = Pattern.compile(regex).matcher(haystack);
 assertTrue(matcher.find());
 assertEquals("Wrong start index of 1st match", 4, matcher.start());
 assertEquals("Wrong end index of 1st match", 10, matcher.end());
}

不错，全部正确。那么，再次调用find方法，会返回第二个“needle”文本的位置吗？代码清单3-1为对应学习测试。

 代码清单3-1　确认我们可以定位字符串中所有的匹配项

@Test
public void testFindStartAndEnd() throws Exception {
 String haystack = "The needle shop sells needles";
 String regex = "(needle)";
 Matcher matcher = Pattern.compile(regex).matcher(haystack);

 assertTrue(matcher.find());
 assertEquals("Wrong start index of 1st match.", 4, matcher.start());
 assertEquals("Wrong end index of 1st match.", 10, matcher.end());

 assertTrue(matcher.find());
 assertEquals("Wrong start index of 2nd match.", 22, matcher.start());
 assertEquals("Wrong end index of 2nd match.", 28, matcher.end());

 assertFalse("Should not have any more matches", matcher.find());
}

好，测试通过了。现在我们可以准确地找到字符串中所有匹配项的位置了。我们肯定能够写出一个相对简单的循环，提取出所有的变量片断及纯文本片断，然后把这些片断加入列表。开始干吧！等等，还有一件事要做。

不晓得为什么，我对代码清单3-1中的正则表达式有些好奇。测试中使用了正则表达式“（needle）”，也许是因为在正则表达式中通常用圆括号来分组。不过，我不确定这些括号在当前情况下是否真的有用。毕竟我们需要的是整个正则表达式的匹配结果，而不是正则表达式中某个子表达式的匹配结果。

实践证明，把正则表达式中的括号删去，测试一样会通过。正则表达式中的子表达式毫不影响匹配结果，这是我在这个小测试中学到了另外一个新知识点。

 注意　虽然Spike时一定要写代码，不过这却不是Spike的主要目的。Spike主要是为了学习知识，获取信息。Spike过程中写了多少代码并无干系，重点在于深入理解问题本身，以及探索相应的解决方法。例如在刚才的Spike过程中，我们学到了如何定位变量的起始及结束的位置，有了这些知识，我们就能够把模板分解成纯文本片断及变量片断了。

接着做吧，下面我们就要应用刚才学到的知识了。首先，我们需要把解析模板和渲染结果这两步分开，相应地，应当从evaluate方法中抽取出两个不同的方法。不过直接变动evaluate方法步骤有些太大。我们可以用深度优先的方法进行改动，首先实现新的解析逻辑，然后再替换掉当前实现。

3.2　以受控的方式修改设计
正如前面所提到的，完成整个解决方案有很多种途径，例如深度优先和广度优先等等。那时，我们先使用了模板解析引擎的伪实现，有效地推迟了业务逻辑部分的实现，直到非实现不可之时。实际上选择另外一条途径也未尝不可。没有现成的硬性的规定判断该使用何种方法，具体问题应当具体分析。模板类变得愈加复杂了，因此我觉得深度优先方法可能会更适用。

我们先添加一个名叫TemplateParse的类，这是我们重构的方向。这个类主要负责将一个模板文本分解成纯文本片断及变量片断。当然我们会测试先行。一旦写完TemplateParse类，我们将会用TemplateParse类替换掉Template类的旧解析代码。

开始动手前，先运行一遍现有测试，以确认当前代码没有问题。暂时注释掉那个测出重复渲染问题的测试后，所有测试都通过了。

换一种实现方法

若使用深度优先方法，我们将会先忘记Template类，专心实现TemplateParse类的分解模板功能。这个新类与现有代码没有任何依赖关系，这是个全新的起点。正如前面提到的，简单的测试总是个良好的开端。

	先做容易的功能

拿不定主意从哪开始？先写个空模板的测试如何？代码如代码清单3-2所示。

 代码清单3-2　用TemplateParse类解析空模板

public class TestTemplateParse {
　
 @Test
 public void emptyTemplateRendersAsEmptyString() throws Exception {
 TemplateParse parse = new TemplateParse();
 List<String> segments = parse.parse("");
 assertEquals("Number of segments", 1, segments.size());
 assertEquals("", segments.get(0));
 }
}

添加TemplateParse类，并使parse方法返回null，这下我们又有了个失败的测试指明前进的方向了。快速添加几行代码，返回包含原始模板文本的列表，测试就能通过了。目前这种实现方式是合理的，因为对于TemplateParse类来说，不包含任何变量的模板就是一个纯文本片断。

我们前进得很快，继续看下个测试：

@Test
public void templateWithOnlyPlainText() throws Exception {
 TemplateParse parse = new TemplateParse();
 List<String> segments = parse.parse("plain text only");
 assertEquals("Number of segments", 1, segments.size());
 assertEquals("plain text only", segments.get(0));
}

这个测试基本没有挑战性。实际上，上个测试写的代码，同样可以使这个测试通过。见代码清单3-3。

 代码清单3-3　用TemplateParse类解析空模板

import java.util.List;
import java.util.Collections;
　
public class TemplateParse {
 public List<String> parse(String template) {
 return Collections.singletonList(template);
 }
}

这时，我们的emptyTemplateRendersAsEmptyString测试和templateWithOnlyPlainText测试中又出现了重复。在继续开发TemplateParse之前，我们先处理掉这些重复。

	消除测试中的重复

两个测试中都创建了TemplateParse对象，且把模板文本传给了这个对象。很显然这是重复，我们可以把公共部分提取成一个帮助方法，如代码清单3-4所示。

 代码清单3-4　消除测试方法中的重复

private List<String> parse(String template) {
 return new TemplateParse().parse(template);
}
@Test
public void emptyTemplateRendersAsEmptyString() throws Exception {
 List<String> segments = parse("");
 assertEquals("Number of segments", 1, segments.size());
 assertEquals("", segments.get(0));
}
　
@Test
public void templateWithOnlyPlainText() throws Exception {
 List<String> segments = parse("plain text only");
 assertEquals("Number of segments", 1, segments.size());
 assertEquals("plain text only", segments.get(0));
}

在此基础上我们还可以继续重构。两段测试都验证了列表长度。两个测试中用的assertEquals方法有明显的规律。因此，我们可以试着重构代码，使其更清晰地表达出本意。看看是否能用Java 5中新添的变长参数语法1。如代码清单3-5所示。

1 Java 5中引入了变长参数概念，简化了代码。例如自定义的验证一个列表的断言方法。

 代码清单3-5　重构断言部分，使代码更清晰表达其本意

private void assertSegments(List<? extends Object> actual, /*（以下2行）变长参数列表简化了断言*/
 Object... expected) {
 assertEquals("Number of segments doesn't match.",
 expected.length, actual.size());
 assertEquals(Arrays.asList(expected), actual);
}
　
@Test
public void emptyTemplateRendersAsEmptyString() throws Exception {
 List<String> segments = parse("");
 assertSegments(segments, ""); // 变长参数列表简化了断言
}
　
@Test
public void templateWithOnlyPlainText() throws Exception {
 List<String> segments = parse("plain text only");
 assertSegments(segments, "plain text only"); // 变长参数列表简化了断言
}

重构后测试仍旧可以通过。既然如此，我们何不往模板中加入两个变量试试？测试先行，还是先从添加测试开始吧：

@Test
public void parsingMultipleVariables() throws Exception {
 List<String> segments = parse("${a}:${b}:${c}");
 assertSegments(segments, "${a}", ":", "${b}", ":", "${c}");
}

嗯，越来越有趣了。返回包含一整块模板文本的列表已不再能通过测试了。我们试着真正地解析一段模板文本吧。

	应用Spike中学到的知识

这时，我们需要从短期记忆中提取出Spike时学到的知识，解决当前遇到的问题。我首先想到的方法是：从模板首部开始读取纯文本，接着读取变量，这时在当前位置设置一个指针，下次循环中可以从指针处开始继续解析模板。这样依次循环处理，直到模板文本末尾。我们一次性实现了这个解析算法，如代码清单3-6所示。实现中用到了Spike中学到的Java正则表达式API的相关知识，自动化测试再次充当了保护网。

 代码清单3-6　消除测试方法中的重复

public class TemplateParse {
　
 public List<String> parse(String template) {
 List<String> segments = new ArrayList<String>();
 int index = collectSegments(segments, template); /*（以下3行）高级解析逻辑*/
 addTail(segments, template, index);
 addEmptyStringIfTemplateWasEmpty(segments);
 return segments;
 }
　
 private int collectSegments(List<String> segs, String src) {
 Pattern pattern = Pattern.compile("\\$\\{[^}]*\\}");
 Matcher matcher = pattern.matcher(src);
 int index = 0;
 while (matcher.find()) { /*（以下5行）收集变量和中间的纯文本*/
 addPrecedingPlainText(segs, src, matcher, index);
 addVariable(segs, src, matcher);
 index = matcher.end();
 }
 return index;
 }
 private void addTail(List<String> segs, String template, int index) {
 if (index < template.length()) { /*（以下3行）如果还有纯文本，附加上*/
 segs.add(template.substring(index));
 }
 }
　
 private void addVariable(List<String> segs, String src,Matcher m) {
 segs.add(src.substring(m.start(), m.end()));
 }
　
 private void addPrecedingPlainText(List<String> segs, String src,
 Matcher m, int index) {
 if (index != m.start()) {
 segs.add(src.substring(index, m.start()));
 }
 }
　
 private void addEmptyStringIfTemplateWasEmpty(List<String> segs) {
 if (segs.isEmpty()) {
 segs.add("");
 }
 }
}

代码清单3-6中代码结构的复杂性陡然增加。公有（public）的parse方法基本上是这样一种算法。它首先会把输入解析成片断序列，然后把最后一个变量后的所有文本都作为一个片断添加到序列中，最后，若此时解析出的片断数量仍然为零，则往片断序列中添加内容为空的片断。

在collectSegments方法中，解析出的片断会被添加到ArrayList中。我们基本上是在遍历正则表达式匹配的所有模板变量。对于每一个变量，我们会将此变量和前一个变量之间的纯文本加入列表中，然后把这个变量加入到列表中，更新index变量以保存最后一个匹配变量的末尾位置。这些从模板文本中提取出片断的私有（private）函数都相对简单且不难理解，这是因为其名字含义足够明确。

现在我们已经有了一个类了，它能把模板解析成包含纯文本片断及变量片断的序列。往模板引擎中加入闪亮的新解析器之前，让我们先回顾一下刚才做过的事情吧。

	继续行进前的反思

用单独的类封装解析逻辑没错，不过，我们的步子有些大了，花了好几分钟时间才完成解析逻辑并通过测试。另外，我们也可以把TemplateParse内部四处传递的片断列表变为成员变量，使其在各个成员函数之间共享。不过，若要使我们的解析器线程安全，那么还需要对parse方法进行同步控制。但是，我们尚不用支持多线程，所以现在只要不共享TemplateParse实例就不会有问题。我们就不一起做这些工作了，不过你可以试着自己去重构。

测试类中的帮助方法并没有准备任何数据，也没有配置任何对象状态，因此这个方法或许应该是TemplateParse类的静态构建方法。

先记下这个潜在的重构，继续Template类的开发。这回记住要坚持小步前行，同时还要时刻留意解析器的复杂程度。下一步我们来修改Template类，用TemplateParse类解析模板。

	安全地替换实现

目前TemplateParse已经有了必要的功能，可以把模板文本解析成片断序列。下一步我们想用它替换Template类中的现有解析逻辑。我们并不会改变任何功能，改变功能是我们要尽力避免的！不错，测试都通过了，可以安全地重构了。

	使用新实现

代码清单3-7中为当前Template类evaluate方法，我们将会用TemplateParse重写这部分代码。

 代码清单3-7　当前evaluate()的实现

public String evaluate() {
 String result = replaceVariables();
 checkForMissingValues(result);
 return result;
}

现在用意向编程，把evluate方法改成：

public String evaluate() {
 TemplateParse parser = new TemplateParse();
 List<String> segments = parser.parse(templateText);
 StringBuilder result = new StringBuilder();
 for (String segment : segments) {
 append(segment, result);
 }
 return result.toString();
}

不错，这样就可以了。我们基本上刚刚创建一个TemplateParse对象，让其担负起渲染模板这艰巨任务，然后遍历解析后的片断，用StringBuilder将这些片断挨个拼接起来。编译时编译器提示说append方法不存在，所以需要添加一个append方法：

private void append(String segment, StringBuilder result) {
 if (segment.startsWith("${") && segment.endsWith("}")) {
 String var = segment.substring(2, segment.length() - 1);
 if (!variables.containsKey(var)) {
 throw new MissingValueException("No value for " + segment);
 }
 result.append(variables.get(var));
 } else {
 result.append(segment);
 }
}

append方法会根据片断类型来进行拼接。对于变量，即在$符号后且包含在大括号中的片断，将拼接其对应的变量值。对于纯文本片断，将拼接片断本身。

运行一遍测试，都通过了，表明替换实现后的代码没有问题。这项工作并不困难，对吧？不过我们为什么要做这些改动？以前的代码质量不错，为什么还要重新写一遍？好啦，既然测试都通过了，那么我们就可以放心的重构代码，使其更加健康。另外，因为目前使用了TemplateParse解析模板并用StringBuilder拼接片断，所以我们可以删掉旧实现中的replaceVariables和checkForMissingValues两个方法了。或许目前的代码质量并不差，但是我们仍旧可以试着继续重构，进一步改善代码质量。

	保持统一的抽象层次

首先，我们先来处理evluate方法。如下所示，目前实现的抽象层次并不一致：

public String evaluate() {
 TemplateParse parser = new TemplateParse();
 List<String> segments = parser.parse(templateText);
 StringBuilder result = new StringBuilder();
 for (String segment : segments) {
 append(segment, result);
 }
 return result.toString();
}

还好，可以很容易地把渲染逻辑提取到单独的方法中去，如代码清单3-8所示。

 代码清单3-8　把渲染逻辑提取到单独的方法中

public String evaluate() {
 TemplateParse parser = new TemplateParse();
 List<String> segments = parser.parse(templateText);
 return concatenate(segments); // evaluate()现在实现的抽象层次一致多了
}
　
private String concatenate(List<String> segments) {
 StringBuilder result = new StringBuilder();
 for (String segment : segments) { /*（以下3行）...concatenate()做的只是一件事*/
 append(segment, result);
 }
 return result.toString();
}

还可以继续重构。append方法仍然不够好看，我们需要对它进行一些修剪，这样我们就可以自豪地向其他同事展示这段代码了。

	通过抽取函数来清理代码

我们应当怎么处理掉append方法中那讨厌的if-else呢？看看下面这段代码。

private void append(String segment, StringBuilder result) {
 if (segment.startsWith("${") && segment.endsWith("}")) {
 String var = segment.substring(2, segment.length() - 1);
 if (!variables.containsKey(var)) {
 throw new MissingValueException("No value for " + segment);
 }
 result.append(variables.get(var));
 } else {
 result.append(segment);
 }
}

试着抽取出几个方法如何？我们可以把if块中的代码提取成一个方法，让if块的条件判断语句含义更加明确。这样append方法会更易读。如代码清单3-9所示。

 代码清单3-9　重构后的append方法

private void append(String segment, StringBuilder result) {
 if (isVariable(segment)) { /*❶（以下5行）基于段类型的分支执行*/
 evaluateVariable(segment, result);
 } else {
 result.append(segment);
 }
}
　
private boolean isVariable(String segment) {
 return segment.startsWith("${") && segment.endsWith("}"); // "${"and"}"周围的变量
}
　
private void evaluateVariable(String segment, StringBuilder result) {
 String var = segment.substring(2, segment.length() - 1); // 变量的渲染值
 if (!variables.containsKey(var)) {
 throw new MissingValueException("No value for " + segment);
 }
 result.append(variables.get(var)); // 变量的渲染值
}

好多了，但是❶append方法中的if-else仍然有问题。这个结构会根据片断的类型来做不同操作，这显然违反了Pragmatic Programmer网站上提到的“Tell, Don't Ask”原则2。另外，模板片断具有一些特殊的行为和操作，并非简单的文本，若用字符串表示模板片断，则会有些“基本型别偏执”（Primitive Obsession）3的坏味道。如果用第一级对象表示这些片断，那么这些问题就迎刃而解了。我们可以使用多态机制，实现与if-else结构同样的逻辑，这样，我们只需要简单的调用片断对象上的方法（告诉片断去做），而不是先判断片断类型，再做出相应操作。

2 http://www.pragmaticprogrammer.com。

3 参考Martin Fowler所著《重构——改善既有代码的设计》一书。

在进行下一步工作前先运行一遍测试，确认当前代码没有问题。很好，所有的测试都通过了，可以继续下一轮重构了。这些重要的字符串的片断确实应该是第一级对象。

3.3　进一步延伸新设计
目前，我们已经替换了模板引擎的核心实现，重构了代码。不过剩下的工作还不少。

我们期望能够忽略模板片断对象的真实类型，用同样的方法处理各种类型的片断对象，这样可以消除掉那些不够优美的if-else，直接把拼接工作交给片断对象完成。继续用意图编程设计出Segment类的新接口。代码清单3-10表示从Template类角度看，我所期望的Segment类的接口。

 代码清单3-10　统一处理不同类型的片断

public String evaluate() {
 TemplateParse parser = new TemplateParse();
 List<Segment> segments = parser.parse(templateText); // 用片断而不是字符串
 return concatenate(segments);
}

private String concatenate(List<Segment> segments) {
 StringBuilder result = new StringBuilder();
 for (Segment segment : segments) {
 segment.appendTo(result, variables); // 让片断自己主动拼接到缓存
 }
 return result.toString();
}

这下代码变得更好了。在代码清单3-10中可以看出，我们应当改变TemplateParse类的parse方法，使其不再返回字符串列表，而是返回片断列表。片断对象应该可以把自己拼接到给定的StringBuilder上，必要时会从参数中的Map对象获取变量值，这样应该没有问题。

此重构该如何进行？由于我们会改变TemplateParse的工作方式，所以应该先改变TemplateParse的测试。等TemplateParse及其测试都修改完后，再去修改Template类。前进的步子不要太大，还记得吧？吸取过去的经验教训，我们先来撤销对evaluate方法的修改，等实现TemplateParse的新功能后再回过头完成这块代码。

3.3.1　保持兼容

为了在引入Segment对象过程中不破坏任何测试，基于字符串的parse方法和基于Segment对象的新parse方法会暂时同时存在，以保持向后兼容。

新parse方法的测试如下：

public class TestTemplateParse {
 @Test
 public void parsingTemplateIntoSegmentObjects() throws Exception {
 TemplateParse p = new TemplateParse();
 List<Segment> segments = p.parseSegments("a ${b} c ${d}");
 assertSegments(segments,
 new PlainText("a "), new Variable("b"),
 new PlainText(" c "), new Variable("d"));
 }
}

看来我们需要Segment接口的两个不同实现。先添加这两个类，通过编译，以得到一个失败的测试，如代码清单3-11所示。

 代码清单3-11　Segment接口及其初始实现

public interface Segment {
}

public class PlainText implements Segment {
 public PlainText(String text) { }
}

public class Variable implements Segment {
 public Variable(String name) { }
}

以下是TemplateParse类中缺失的parseSegments方法的空实现：

public List<Segment> parseSegments(String template) {
 return null;
}

编译可以通过了，但测试是失败的，接下来我们来试着通过测试。

	在现有代码基础上进行修改

现有的代码已经可以把模板解析成片断了，所以可以在此基础上进行修改以实现我们想要的功能。我们可以先得到字符串列表，然后将列表中所有字符串转化为对应的片断。实际上，在Template类中我们已经有类似功能的代码了，可以试着重用。

目前我们已经有一个方法来辨别给定字符串是变量片断还是纯文本片断，不过这方法目前是私有成员方法。为了在TemplateParse类中也能访问到此方法，我们可以将其改为公有静态方法。先注释掉失败的测试，然后运行一遍所有测试以确认测试都能通过，再把isVariable方法变为公有静态方法。重新运行一遍测试，全都通过了，表示修改没有问题。现在可以在Template类中调用这方法了。如代码清单3-12所示。

 代码清单3-12　用来辨别给定片断是否为变量的工具方法

public class Template {
 ...
 public static boolean isVariable(String segment) {
 return segment.startsWith("${") && segment.endsWith("}");
 }
}

现在我们可以用这个工具方法实现新parseSegments方法了。虽然这种依赖关系有问题，不过我们肯定能在稍后的重构中解决这个问题。

基于当前解析逻辑的新parseSegments方法如代码清单3-13所示。

 代码清单3-13　将String列表转化为Segment 对象列表

public class TemplateParse {
 ...
 public List<Segment> parseSegments(String template) {
 List<Segment> segments = new ArrayList<Segment>();
 List<String> strings = parse(template); // 将template解析到String片断
 for (String s : strings) {
 if (Template.isVariable(s)) { /*（以下6行）将所有String转换为Segment对象*/
 String name = s.substring(2, s.length() - 1);
 segments.add(new Variable(name));
 } else {
 segments.add(new PlainText(s));
 }
 }
 return segments;
 }
}

添加恰当的equals实现，新测试就能通过了。如代码清单3-14所示。

 代码清单3-14　两个Segment类的最小实现

public class PlainText implements Segment {
 private String text;
　
 public PlainText(String text) {
 this.text = text;
 }
　
 public boolean equals(Object other) {
 return text.equals(((PlainText) other).text);
 }
}
　
public class Variable implements Segment {
 private String name;
　
 public Variable(String name) {
 this.name = name;
 }
　
 public boolean equals(Object other) {
 return name.equals(((Variable) other).name);
 }
}

 equals()及hashCode()

 代码清单3-14中虽然有了equals方法，但并没有实现hashCode方法。敏锐的读者可能会觉得这样有问题。在Segment类中添加hashCode方法其实很容易，不过当前测试并没有要求这项功能。如果要添加这个方法，需要先用测试明确表明我们的意图，然后再动手实现。虽然我们现在不会那样做，不过这里有个不错的工具类可以供我们使用。这个工具类叫作EqualsTester，它是GSBase JUnit扩展（http://gsbase.sf.net）的一部分。这个类可以彻底地测试equals和hashCode方法。

所有测试都通过了，现在可以试着替换Template类的实现了。不过在修改Template类之前，我们先试着把一些功能添加到新创建的两个Segment类中吧。

	把逻辑重构到对象中去

该如何消除那难看的的if-else呢？我们可以使用多态把不同逻辑封装到对应类型的片断对象中。此方法会从包含模板变量值的Map对象中取出值，然后渲染模板片断。下面来为Segment接口添加evaluate方法吧：

public interface Segment {
 String evaluate(Map<String, String> variables);
}

首先实现纯文本片断。相应的测试很简单，如代码清单3-15所示。

 代码清单3-15　纯文本片断的测试

public class TestPlainTextSegment {
 @Test
 public void plainTextEvaluatesAsIs() throws Exception {
 Map<String, String> variables = new HashMap<String, String>();
 String text = "abc def";
 assertEquals(text, new PlainText(text).evaluate(variables));
 }
}

这种典型的小而集中、测试先行的步骤，通常对应的实现也比较简单（见代码清单3-16）。

 代码清单3-16　为纯文本片断实现evaluate()方法

public class PlainText implements Segment {
　
 private String text;
　
 public PlainText(String text) {
 this.text = text;
 }
　
 ...
　
 public String evaluate(Map<String, String> variables) {
 return text; // 但愿所有的编程工作都这么简单！
 }
}

纯文本片断已经实现了，轮到变量片断了。代码清单3-17中的测试用于验证Variable对象能够从Map对象中取出变量值并渲染自己。

 代码清单3-17　测试变量片断

public class TestVariableSegment {
 @Test
 public void variableEvaluatesToItsValue() throws Exception {
 Map<String, String> variables = new HashMap<String, String>();
 String name = "myvar";
 String value = "myvalue";
 variables.put(name, value);
 assertEquals(value, new Variable(name).evaluate(variables));
 }
}

实现依旧很简单，如代码清单3-18所示。

 代码清单3-18　变量片断的测试

public class Variable implements Segment {
　
 private String name;
　
 public Variable(String name) {
 this.name = name;
 }
　
 ...
　
 public String evaluate(Map<String, String> variables) {
 return variables.get(name); // 变量也没那么难渲染
 }
}

测试都通过了。现在我们有了两个不同类型的片断，它们可以用给定的模板变量Map正确的渲染自己。终于可以替换Template类的实现了。

3.3.2　替换实现

有测试作为保护网，我们可以放心的改变Template类的evaluate方法了，见代码清单3-19。

 代码清单3-19　替换Template实现

public String evaluate() {
 TemplateParse p = new TemplateParse();
 List<Segment> segments = p.parseSegments(templateText); // 将template解析到Segment对象
 return concatenate(segments);
}

private String concatenate(List<Segment> segments) {
 StringBuilder result = new StringBuilder();
 for (Segment segment : segments) {
 result.append(segment.evaluate(variables)); // 让Segment对象自修正
 }
 return result.toString();
}

有了TemplateParse类以及能够渲染自己的Segment对象，改动就很简单了。有趣的是，运行测试后，我们发现有重要的功能被遗漏了。

	被安全网所挽救

Template类的新evaluate方法工作完全正常，但是遇到缺失的变量值后不再会抛出异常！幸亏我们有测试，不是吗？

我们来补一个测试吧。应当在哪里为缺失的变量值抛出异常呢？Variable类？因为类会同时访问模板中包含的变量名以及所有已赋值的模板变量。Variable类的完整测试见代码清单3-20。

 代码清单3-20　用于验证缺失变量值的测试

public class TestVariableSegment {
　
 private Map<String, String> variables; // 将代码副本重构入夹具中
　
 @Before
 public void setUp() {
 variables = new HashMap<String, String>(); // 将代码副本重构入夹具
 }
　
 @Test
 public void variableEvaluatesToItsValue() throws Exception {
 String name = "myvar";
 String value = "myvalue";
 variables.put(name, value);
 assertEquals(value, new Variable(name).evaluate(variables));
 }
　
 @Test
 public void missingVariableRaisesException() throws Exception { /*（以下10行）为缺失的变量补测试*/
 String name = "myvar";
 try {
 new Variable(name).evaluate(variables);
 fail("Missing variable value should raise an exception");
 } catch (MissingValueException expected) {
 assertEquals("No value for ${" + name + "}",
 expected.getMessage());
 }
 }
}

若没有那第二个测试，我们很可能会无意间改变了模板引擎的外部行为。多亏有了测试，我们尽早发现问题并纠正了错误。代码清单3-21中为修正后的代码。

 代码清单3-21　Variable类在渲染时检查缺失值

public class Variable implements Segment {
 ...
 public String evaluate(Map<String,String> variables) {
 if (!variables.containsKey(name)) { /*（以下4行）检查到缺失值时发出异常警告*/
 throw new MissingValueException(
 "No value for ${" + name + "}");
 }
 return variables.get(name);
 }
}

运行一遍测试，一切正常，除了……

	删去无用的代码及进一步清理

用Segment对象替换Template类旧实现后，我们会发现不少方法已经没用了。删除这些代码会让工作变得更轻松，不是吗？在清理包括那难看的if-else块等无用的代码时，我们注意到了isVariable方法。当初为了能在TemplateParse类中访问到此方法，我们将其改成了公有静态方法。而目前只有TemplateParse类才会用到这个方法，所以我们可以将其移到TemplateParse类中，变为TemplateParse类的私有方法。

这一部分内容很多，不过学习效果不错！我们的代码质量变得更好了，类之间的责任划分也更加清楚了。

不过在完成模板引擎这件作品之前，我们还有很多工作要做。首先，因为其他类不再会访问TemplateParse类那种基于字符串的解析方法，所以可以将其改为私有方法。另外，既然没有人会再使用旧的解析方法，我们可以继续简化TemplateParse类，直接把PlainText和Variable对象加入列表中，而不是先把字符串加入列表中，再把这些字符串转化为片断对象。有了完备的测试做保护，这些工作应该都是小问题。就当作是留给你的重构练习题吧。

现在，让我们结束本章，继续下一个话题。关于TDD，我们还有很多知识点需要讨论！

3.4　小结
在本章中，我们用TDD技术开发出了一个非常稳定的模板引擎，而且花费的时间不比实现设计的方式长。此外，我们有了充足的测试覆盖到代码的每个分支，在添加新功能时不用担心破坏掉现有功能。

不过模板引擎不算复杂，因为我们在项目中写的大部分代码都不是如此的独立。不过不用担心，在下面的章节中我们会学到各种解决这类问题的技巧。在第二部分中，我们会遇到许多实际工作中的问题，比如复杂的API及各种麻烦的技术，等等。

虽然我们现在对TDD充满热情，但是要知道TDD并不是万能的。TDD能帮我们写出运行良好的软件，不过我们还是要想办法保证交付的功能正好能满足客户的需要。在第三部分中，我们会把测试先行及TDD的概念应用到用户故事、功能以及需求等更高层的方面。我们将这种技术称为验收测试驱动开发。

剩下的内容还不少。现在开始第4章吧，我们会介绍更多的技巧，更深入地理解TDD技术。

第4章　TDD的概念与模式

 我记得模式是和电视机同步发展的，最初只是个测试模式，偶尔需要写一点儿程序。

 ——弗朗西斯·福特·科波拉

在第2章和第3章中，我们学习了如何用TDD开发模板引擎。我们专门挑选了模板引擎这个简单的例子。这例子相当理想化，实现过程中不会遇到太多困难。在本章中，我们将会学到许多不同的模式和技术。老练的TDD开发者都用这些模式和技术清除前进的障碍。这些模式涉及的面很广，从如何使产品代码的可测试性更佳，到组织和运行测试的各种方法等，都有涉猎。我将会向你们展示一些独门秘籍。

我们首先会讨论如何编写测试，在此过程中，会谈到许多选择测试的技巧，以及一些需要牢记在心的大体准则。我们也会讨论三种有略微差别的通过测试的技巧。这些技巧十分关键，重要性甚至不亚于编写测试。学习完如何编写测试及通过测试的技巧后，我们将会讨论一些重要概念，包括“夹具”（fixture）、“测试替身”（test doubles），还会讨论到“基于状态的测试”（state-based testing）与“基于交互的测试”1（interaction-based testing）的区别。我们还会重点讨论如何用测试替身处理难缠的协作对象。我们也将会探究三种不同的测试替身，包括伪实现(fakes)、测试桩（stubs）及模拟对象（mock object）。

1 或称behavior-based testing，基于行为的测试。——译者注

讨论完测试相关的概念后，我们将会转而讨论设计问题。首先，我们将会提及四条准则，用于提高设计的可测试性。然后，我们将会研究一些与单元测试相关的模式，涵盖了从不同类型的断言到如何在较高层面上组织测试等一系列知识点。

在本章结尾部分，我们将会讨论如何在遗留代码基础上进行TDD。这些遗留代码在设计时通常都没有考虑到可测试性，通常也不会有现成的测试套件（test suite）。

本章内容很多，讲解的速度也会很快。不过不用担心，若步伐太快，我们会停下来小憩。现在，我们先来讨论如何编写测试。

4.1　如何编写及通过测试
正如生活中的很多事情一样，编写测试以及测试驱动说起来容易做起来难。新手上路，第一个问题就是从哪个测试开始写起，这可不是很容易选择。此外，整个TDD周期中每一步的质量都与开发人员有直接的关系，测试的目标，测试的组织方式等各个元素都会影响到质量。

为了帮助新手顺利渡过第一关，我们将会讨论许多测试选择技巧，这些赋有启发性的方法可以帮我们选择测试。我们还会讨论到测试驱动的整体原则。这些重要的准则必须要严格遵从，其余的可以根据自己的喜好及习惯进行调整。

首先，我们来学习一些有趣的测试选择技巧。

4.1.1　测试选择技巧

如果你打算买个新的数码相机，你该如何在众多的相机中做出选择？如果你和我一样，那么你可能会花几个小时来浏览网页和相机杂志，阅读各种评论，比较技术特性和价格，从美学角度衡量相机，在许多同样优秀的相机之间犹豫不决。没有哪个简单直接的相机特性能帮我们作出决定。

选择测试也是如此。在衡量待选测试的各个特征时，我们需要依靠直觉，也需要注意收集各种带有启发性的线索。首先，下面四个技巧可以帮我们选择下一步的测试：

	深入细节与整体考虑

	探索未知与轻车熟路

	最大限度地获取价值与摘取现成的果实

	走通基本功能路径1（happy path）与先处理出错情况

1 http://en.wikipedia.org/wiki/Happy_path。

下面讨论这四个测试选择技巧。

	细节与整体

我们都曾在计算机科学的课程上学到，树的遍历有多种方法，如深度优先遍历或广度优先遍历。同样，我们可以沿着不同路径测试驱动出预想的设计和功能。

例如，我们可以先实现整个框架，而在其内部使用一个算法的伪实现。在整个框架都运转良好后再着手实现真实算法。或者可以从细节入手，先实现算法，准备好各种构建材料后，再开发整个结构。

我将这两种方法分别称为“细节优先”和“整体优先”。当然这两种方法各有优劣。细节优先有利于降低风险，例如“我们能够对用户提交上来的图片进行模式识别吗？”，不过从整体角度考虑，处理模式识别问题会耽搁总体进度。从另一方面考虑，整体优先能够很快的验证总体设计，同时不用过多操心细节。整体优先的劣势在于其推迟了细节方面的工作进度。

实际上，我们会对各种方法做出评估，通常会（但不总会，如下节所述）先解决我们最关心的问题。这样就引出第二个测试选择技巧——探索未知与轻车熟路。

	不确定与熟悉

减少不确定性是我们选择测试时要考虑的因素之一。除此之外，我们还可以先挑选自己熟悉的测试，稍后再处理不确定因素较多的测试。处理不确定性的好处简单明了，因为把未知转化成已知能有效的降低风险。

一直在我们熟悉的设计领域工作有什么好呢？那又不会带来任何新的知识和信息。这种工作方式有什么好呢？可是，付出并不总会得到回报。虽然降低风险很有价值，但是比起爬到高高的枝头探索未知的空间，有时摘下唾手可得的果实更加实惠2。

2 毕竟摘几个苹果吃就不会那么饿了。

这又引出第三个测试选择技巧——高价值与现成果实。

	高价值与现成果实

回顾我们曾写过的测试，其中一些的工作量显然比其他的要多。同样，每个测试对整体功能做出的贡献也不尽相同。理想情况下，我们应当挑选那些工作量最少，回报却最多的测试。不过通常待选测试之间的区别并不是很明显，我们需要在付出回报比差别不大的各个测试间做出选择。

测试对象的基本功能还是测试对象对null输入的处理，是高价值与现成果实的一个典型例子。开发基本功能需要更多的时间精力，价值也更大。防御出错的功能、处理null输入，这些都很容易实现，但价值也小得多。

第四个，也是最后一个测试选择技巧，是关于基本功能与出错情形。

	基本功能与出错情形

通常，我会先设法完成基本功能，然后再处理出错情形，如第三方类库抛出的异常及非法的输入等。这样做的主要原因是出于价值的考虑。一个能够处理任何出错情况的异常健壮的系统，若不能提供基本功能，根本毫无用处。另一方面，若某个系统在网络出现问题时会崩溃，那么在崩溃前，至少还有一定使用价值。

话虽如此，有时候还是需要把基本功能放到一边，先处理所有的出错情况。若挨个处理出错情况相当自然并符合直觉，并且只有正确处理了所有错误情况后系统的价值方能得到体现，则应当使用这种策略。例如，我们需要实现一个类似于状态机的功能，或是某种既定的工作流，若其中任何一个环节出现问题，则会直接跳过余下的工作流逻辑。这时处理出错情况显得尤为必要。不过那怕是这种情形，基本功能也比错误处理更加重要！

现在我们已经学到了很多选择测试的技巧。不过，不必过多考虑哪个测试才是“正确”的选择，测试的选择并没有一个标准答案。你会逐渐消化那些测试选择技巧，使用起来也会更加得心应手。不过总体上，从简单的测试入手应该是个好主意。一旦完成了第一个测试，接下来的工作就会变得更有头绪了。

不过在选择下一个测试之前，我们需要先使第一个测试通过。让我们来看看该如何做。

4.1.2　实现技巧

正如有多种方法选择及编写测试，使测试通过也有多种途径。在著名的Test-Driven Development by Example一书中，Kent Beck列举了3种实现方式：伪实现（faking it）、三角法（Triangulation）以及显而易见的实现（obvious implementation）。在本节中，我们会详细介绍这三种方法。

先从最直接的方式讲起——伪实现。

	伪实现

写完测试时，我们并不总是清楚如何正确的实现功能使测试通过。这时候，我们可能会先伪实现某个功能，尽快回到绿的状态。可能是因为我们步伐过大，或是触到了系统内的某个“边界”，不过无论是什么原因都需要尽快通过测试，回到稳固可靠的状态。而伪实现功能比停留在红的状态好得多。返回硬编码的值可能是最简单的伪实现方法。你可能还记得，我们在上一章开发模板引擎时曾用过这种方法。

在伪实现某个功能后，我们可以很容易地切换到“三角法”模式，因为产品代码中绝不能包含硬编码的值，所以要想方设法清除掉硬编码部分，使用真实的实现。当然，为了达到目的，我们需要写一个新的测试。

	三角法

在第3章中，我们曾使用三角法来清除产品代码中硬编码的字符串。若我们还不清楚如何总结归纳出某段硬编码的应用逻辑，则可以用三角法向正确的实现逐渐演进。

“三角法”，顾名思义，正如电视中的警察们利用手机信号追踪犯罪嫌疑人。警察们从多点监测疑犯的信号进行三角定位。已知观测点的位置，警察们就可以在地图上标出两条线，线的交点则为疑犯位置。

我们在使用三角法时，当然不会监测信号，也不会在地图上做标记。我们每写一个测试，都会在一个维度上约束了可能的解决方案。当测试足够多时，如图4-1所示，测试就能有效地缩减解空间，三角定位出我们期望的实现。

图4-1　三角法能不断地缩减解空间，直到完全符合我们的期望

例如，在开发信用卡验证组件时，我们可能不知道如何组织类的继承结构以支持各种信用卡略微不同的卡号长度或验证规则3。使用三角法，我们可以先验证一种信用卡，例如MasterCard。这种测试应该很容易写，相应的功能也不难实现。

3 大部分信用卡商家都用Luhn算法计算校验值，还会用一些固定的前缀来区分每个牌子。在Google中搜索“信用卡校验”以及“luhn算法”可以得到更详细的信息。

接下来我们可以选择另外一种卡，例如Visa，然后测试我们的组件能够正确的验证Visa和MasterCard，并可以区分这两种卡的差别。这些新测试会逐渐使得通用验证逻辑更加明显。轮到添加Diners Club卡时，我们也许就可以归纳总结出逻辑验证代码了。

	显而易见地实现

还好，通过测试的方法通常都显而易见。当然我们并不是说像硬编码返回值那样显而易见，而是指正确的实现通常都很容易。在这种情况下，我们大可以快速前进，直接做实现，而不用像三角法或者做伪实现时那样谨小慎微。

给定一个集合，依据条件求其子集等日常编码工作是显而易见的实现方法的例子之一。遇到这种情况，我们大可直接实现，看看是否能通过测试。如果测试失败了，则直接撤销修改。全部撤销，一点不剩。不会再试第二次！

在下一节中，我们将会学到一些非常简单的测试驱动准则。当你逐渐熟练地掌握TDD后，就可以多研究测试选择技巧了，不过这些简单的准则足以保证你在学习时不会走弯路。

4.1.3　测试驱动的基本准则

我曾经和我的朋友Bas一起开设过TDD的课程。在教学过程中，见到许多很有激情的开发人员努力想写出高质量的测试，试图高效地进行测试驱动，尽全力想要避免各种陷阱，但却迟迟不得要领。

一天，我们坐火车去某地开设课程。在路上，我们试着制定出一个简短的清单，列举出各项TDD原则。有了这个清单，即使没有资深TDD开发人在场指导，初学者也不会迷失方向。我们希望使清单尽可能短，以方便记忆。这份清单应当像一座灯塔，不仅能帮助人们启航，还能引导TDD开发人员安全的驶向高生产率的港湾。

最终，我们总结出以下几条指导准则：

	绝不跳过重构

	尽快变绿

	犯错后减慢速度

下面我们来挨个讨论这些准则，看看它们有多么重要，以至于需要添加到这如此简短的清单中。

	绝不跳过重构

如果你还没考虑过把“重构”一词写在手背上，现在是时候了。我并不完全是在说笑。观察了许多初次使用TDD的团队后，我发现，重构不足是最大的问题。

若不能彻底地重构，代码中仍旧会存在重复，这基本上等于在自己的椅子上安装定时炸弹。我们能够清晰地记得TDD中的“测试”及“编码”阶段，但却很容易忽略亟待重构的代码坏味道。

因此，切记，不要跳过重构。如果你在和别人结对编程，那么你们可以互相监督，指出任何被对方疏忽的代码重复。并且，请把Martin Fowler的《重构》一书放在卫生间4，随手翻阅。另外，学会使用IDE中的自动重构功能。这都是为你好，相信我。

4 Martin肯定不会介意的，毕竟他在乎的是研究工作。

如果我姿态太高，我道歉，不过全程遵循TDD周期相当重要。好的，第一个准则已经讨论完了，还剩两个要讨论。其中，第一个“尽快变绿”与TDD周期的编码阶段相关，先来讨论这个。

	尽快变绿

测试驱动时，我们要用最简单的方法解决手中的问题。不过这不是编码阶段所追求的目的，编码阶段应当试图尽快回到绿的状态。重构时再考虑优化设计。

你或许想大声诵读上一段文字。不用担心别人会把你当傻瓜，你只是在说实话。

写一辈子程序，即使采用了TDD，也难免会犯错。我们这第三个准则提醒我们出错后需要放慢前进的脚步。

	出错后放慢脚步

开发人员在实践TDD过程中会自然地逐渐增大步伐。不过有时候，我们前进步伐太大，以至于出现错误而前功尽弃。这时，我们应当意识到步伐已经太大了，修改已超出理解范围。我们需要小心行事，小步前行，并彻底地重构。就这么简单。到饮水机那弄杯水喝，休息休息，也不错。

这些准则当然不是成功测试驱动的参考大全。指导准则不能凭空创造成功，只有人才可以。即便如此，我希望这些准则能帮你顺利的提高工作效率，绕过困扰很多TDD新手的陷阱。

接下来我们将会讨论一些类似的准则及技巧用于提高设计的测试性。不过在那之前，先来了解一些测试的基本概念。这些概念我们曾遇到过，今后也会很常见。

4.2　重要的测试概念
法国政治学家Alexis De Tocqueville曾说过：“词汇表是政党丢弃的最后一样东西”1。软件开发工程师们也是如此。词汇表不仅是词组而已。词汇表能够帮我们有效地和同行进行沟通。好的词汇表还能够帮助理解概念所要表达的目的及本意。

1 见Alexis de Tocqueville，《旧制度与大革命》, ed. J. P. Mayer及A. P. Kerr（Doubleday, 1955）。

测试是TDD中的重要一环，很多相关概念值得着重讲解。下一步，我们首先会介绍“夹具”、“测试替身”等术语。然后会重点讲解测试过程中两种有用的验证方式。我们也会讨论这两种验证方式各自的适用范围，以及何时该结合使用。最后，会在4.3节中详细讨论测试替身。

现在，我们回到编程方面来，介绍夹具。

4.2.1　夹具是测试的上下文

在第2章中，我们把夹具定义为测试类中所有测试方法共有的初始条件。我们将会深入探讨这个概念，搞清楚为何夹具是必备要素。下面，首先讨论初始状态的各个组成部分及其成因。

	状态概观

迄今为止，我们都是在某类初始化方法中创建相互关联的对象以及构建出各个测试方法所需的夹具的。不过夹具的范畴不仅如此。

你可能还记得，在第2章中我们曾提到（假设选择JUnit作为单元测试框架），夹具包括测试类的初始化方法中实例化过的成员变量及其他配置好的状态。这“其他配置好的状态”指的是什么？

实际上是指执行初始化方法时整个运行时的状态（例如运行测试的Java虚拟机实例）。产品和测试代码中的静态变量，以及在加载类时静态初始化块（static initializer block）中创建的各种对象等，都属于“其他配置好的状态”。

例如，我们可能有一些平台相关类，加载类的过程中，会根据系统属性给平台类的相关属性值赋值。当运行测试时，系统的当前状态成了当前测试夹具的一部分，作为测试执行的初始环境。

归结其本质，夹具是整个运行时的状态，而并非仅指测试类的成员变量值，或相关对象的内部状态。

那么我们为什么需要夹具？我们又为何要重视夹具？为其劳心费神有何必要？这是因为它能帮我们消除重复，使测试更加清晰紧凑。

	夹具可消除重复

追求优良的设计，是重视夹具的部分原因。我们应当用产品代码的标准来衡量测试代码，没有重复可能是最关键的衡量标准之一。夹具把多个测试共享的状态移至一处，有效消除了重复。

正如各种设计准则，事无绝对。例如，盲目的消除所有重复并不总是件好事。虽然消除重复大体上正确，不过有时为了提高可读性，少量的重复也是可以接受的。

但是不能够走极端，光板夹具（clean slate fixture）是绝对要避免的反模式（anti-pattern）。光板夹具，指每个测试方法都从头构建出的夹具；各个测试方法的初始化过程毫无共性。这表明测试间要么存在大量重复，要么毫无内聚性。若是后者，则需要把测试类分成几个类。

虽然能够消除测试代码中的重复这一特点已经足够引起我们对夹具的重视，但是还有一大好处值得一提：恰当的夹具能够使测试更加紧凑。

	夹具使测试更紧凑

熟练的TDD开发人员很容易写出紧凑的测试。其要诀是，利用夹具设置与测试相关的系统、对象，只用几行代码就可以完成验证逻辑。

测试方法只关注真正要测的东西，同时避免其他任何干扰，这样做的好处显而易见，因为我们不会被一叶障目而不见泰山。这样，我们不再反复阅读代码，企图弄清楚“那段逻辑”到底在哪儿。若夹具足够好，其本身就能直接给出上下文，这样测试代码就可以直指要害了。

若这些理由还不够充分，多从内聚性和复杂性角度保证夹具的质量，可以使测试的质量不断提高，也能使测试有效地表达出其所测试的点。相反，如果测试过于复杂，一周后可能就不清楚测试正确与否了。所以要善待你的夹具们。相信我，没错的。

关于夹具的介绍到此为止，接下来介绍另一个前面章节中并没有提及的关键测试概念——测试替身。

4.2.2　用测试替身替换依赖

测试中遇到的困难不少是因为被测对象和其他对象之间存在协作，或存在其他类型的依赖关系。例如某个类的构造函数参数是一个java.sql.ResultSet对象。Java.sql.*接口很难实例化，因为这些接口没有独立的标准实现。通常JDBC驱动厂商会提供这些接口的实现，而这些实现很可能会连接数据库。因此这类依赖通常很难处理。

如果要做TDD，想写自动化测试，我们经常会遇到这类问题。这是一个很棘手的问题。不过还好，大部分时候都会存在某种替代方法帮我们更容易完成工作，同时不牺牲质量、速度和效果，这种替代方法叫做测试替身。

我们可以用测试替身来替代真实对象。测试替身乔装打扮，使用者对此毫不察觉。无论从实际执行时间角度，还是从开发和维护测试所耗时间角度，测试替身通常都比真实对象更快。我们通常这样使用测试替身：首先创建测试替身（数量多少根据需要而定），然后配置测试替身的状态、行为和期望，最后把测试替身传给待测类，验证执行结果。

现在我们已经大体了解了测试替身。在深入探讨不同类型的测试替身之前，我们先来了解两种不同类型的测试。

4.2.3　基于状态及基于交互的的测试

在最高层面上，根据验证期望行为的方式不同，测试替身可分为两类：基于状态的测试以及基于交互的测试2。下面分别进行讨论。

2 Martin Fowler在“Mocks Aren't Stubs”（http://www.martinfowler.com/articles/mocksArentStubs.html）一文中详细地讨论了基于状态和基于交互的测试。

	基于状态的测试

基于状态的测试利用对象内部状态来验证执行结果的正确性。我们需要获取待测对象及其协作对象的状态，然后与期望的状态做对比，进行验证。

为更好地理解基于状态的测试，请参考以下代码：

@Test
public void listShouldNotBeEmptyAfterAddingSomethingToIt()
 throws Exception {
 List<String> list = new ArrayList<String>();
 assertTrue(list.isEmpty());
 list.add("something");
 assertFalse(list.isEmpty());
}

以上是基于状态测试的最简单的形式，测试中完全使用了真实产品代码中的类。用测试替身也可做同样的测试。例如，我们可以替换掉测试中真实的System.out，用PrintStream实现，而PrintStream会保存输出内容。这样，测试就能够读出输出的内容，以验证写入System.out中的内容是否与我们期望的一致。

有时，若夹具不大，而且不需要太多初始化过程，那么基于状态的测试能够很好的利用测试替身。特别当已经有了现成的测试桩可以利用，不用自己构建时，这个优势更加明显。不过有时候，我们更希望测试交互，而不是测试对象内部状态的变化。

	测试交互

基于交互的测试的验证方法截然不同。基于交互的测试验证待测对象与其协作对象以我们期望的方式进行交互，而非验证这些对象的最终状态是否匹配。换句话说，我们并不关心对象的内部状态，而更在乎待测对象是否正确调用了协作对象的方法，是否使用了正确的参数。如果可能，还需要验证调用顺序是否正确。

要实现基于交互的测试，需要使用动态模拟对象库（dynamic mock objects library）。在Java中，这种库有EasyMock3、jMock4以及rMock5等。这些库都是开源的，用户也很多。

3 http://www.easymock.org。

4 http://www.jmock.org。

5 http://rmock.sf.net。

有了这些库，我们可以给定一个接口，然后指定期望的交互行为（方法调用），这时，库会返回给我们一个已经实现好接口的测试替身。我们将此测试替身传递给测试代码，在测试中，这个测试替身被称为模拟对象。运行完测试后，我们可以要求模拟对象验证实际交互行为与预期的是否吻合。附录C中有使用EasyMock API实现交互测试的例子。

 自制的基于交互的模拟对象

 我们当然也可以写出自制的模拟对象，用于记录方法调用的次数以及调用参数。即便如此，使用完整的模拟对象框架，也比用巧妙方法自制的静态测试桩所需的工作量少。那些框架通常也支持更复杂的功能。例如从字节码层面模拟具体类（而非接口），自己实现这些功能并非易事。

交互测试时有一点需要注意：如果交互变得过长或者过于复杂，那表明应该进行重构了。如果不重构，将会使测试变得很脆弱，对象之间交互行为上一些无关的变动，也可能使测试失败。这通常表明接口太大，行为过多，或者表明对象间的交互抽象层次不一致。

	各种方法的适用范围

正如你所看到的，模拟对象或基于行为的测试，通常比基于状态的测试更加繁琐。对于像这个例子一样的简单测试来说，这不足为奇。当测试更复杂，需要关注许多不同对象之间的交互，而非简单计算或状态变化时，不用自己构造一个基于状态的测试替身的好处就开始显现出来了。不过别担心，在第二部分中，我们有大量时间实践基于交互的测试方法。

基于状态的测试和基于交互的测试都很有用，两者结合使用才能够覆盖所有待测点。引用J. B. Rainsberger所著的《程序员实用测试技巧》（Manning出版社，2005）一书中的文字，“我们依赖基于交互的测试来验证待测对象如何与其协作类进行对话；用基于状态的测试验证对象如何做出回应”。换句话说，我们结合使用两种方法来回答下面的问题：“我正确使用了我周围的对象吗？”，“我对外部输入做出正确的回应了吗？我正确处理了其他对象的反馈吗？”

我们可以验证状态，也可以验证行为；每种方式各有优劣。下面，我们将进入测试替身的纷繁世界，讨论伪实现、测试桩和模拟对象的定义及分类。

4.3　近处观察测试替身
有时，我们并不希望在测试中使用真实的类，原因可能有几种：

	太慢

	目前尚不存在

	其依赖的东西并不存在

	很难实例化，为测试配置状态也不容易

这时，我们需要测试替身，即真实类的替代实现。下面来举例说明。

4.3.1　测试替身的例子

例如，有个方法需要com.acme.PricingService的实例来计算订单的总价。创建PricingService的实例可能并不困难，但是如果执行calculateDiscountedPrice(Order)却需要整整一秒钟，那会怎样？如果每个测试都花费几秒钟，那么我们肯定不会希望有太多测试使用真实对象了。一秒钟听起来并不多，不过若一个测试能够执行一整秒，那么其他测试也有可能花费同样多的时间，累积起来，时间就不短了。

使用真实对象还有其他的问题。例如，如果需要准备大堆测试数据才能使PricingService正常工作，那会怎样？如果PricingService需要数据库连接呢？或者PricingService尚未实现呢？一些不确定的行为也可能影响可测试性，例如主键的产生，或与时间相关的功能点。另外，在测试中使用真实对象，也很难模拟抛出异常的情形（例如，请设想用插拔网线的方式来模拟暂时的网络故障）。

代码清单4-1中演示了如何使用测试替身替代真实的PricingService实现。

 代码清单4-1　测试替身的典型使用模式

public class PricingServiceTestDouble extends PricingService { /*❶（以下9行）测试替身*/
 private float discount;

 public PricingServiceTestDouble(float discount) {
 this.discount = discount;
 }

 public float getDiscountPercentage(Customer c, Product p) {
 return discount;
 }
}

public class OrderProcessorTest {
 @Test
 public void testOrderProcessorWithMockObject() throws Exception {
 float initialBalance = 100.0f; /*❷（以下11行）安排测试数据和伪实现*/
 float listPrice = 30.0f;
 float discount = 10.0f;
 float expectedBalance =
 (initialBalance - (listPrice * (1 - discount/100)));

 Customer customer = new Customer(initialBalance);
 Product product = new Product("TDD in Action", listPrice);
 OrderProcessor processor = new OrderProcessor();
 PricingService service =
 new PricingServiceTestDouble(discount);
 processor.setPricingService(service);

 processor.process(new Order(customer, product)); // ❸ 调用操作

 assertEquals(expectedBalance,
 customer.getBalance(), 0.001f); // ❹ 证实结果符合期望
 }
}

简言之，代码清单4-1中的例子说明了如何透明地给待测对象传入❶PricingService的伪实现，从而避免了耗时的数据库连接等操作。比起飞快的伪实现，这些操作极其耗时，而且并不是我们测试的目的所在。相反，我们配置了待测对象❷，使其使用测试替身，调用待测对象❸，然后验证结果是否符合期望❹。

我们刚才见到了测试替身的一个例子。我们可以通过由伪实现、测试桩和模拟对象构成的简单分类表进行区分。

4.3.2　伪实现、测试桩和模拟对象

法国诗人雨果曾写道“未来有不同的名字：对弱者，未来遥不可及；对胆怯者，未来是未知；对勇士，未来代表机会”。测试替身也是类似。测试替身拥有不同的名字，各有其深意。尽管有其他的分类方法（而且可能和这个分类有些冲突），不过我试图给出个合理的整体定义，如表4-1所示。

表4-1　分类整理不同类型的模拟对象

 	Mock类型
 	描　　述

 	测试桩
 	测试桩实际上是给定接口最简单的实现。例如，测试桩内的方法通常返回硬编码的、无意义的值

 	伪实现
 	伪实现比测试桩更复杂，通常可以认为是接口的另一种实现。换言之，虽然伪实现并不是鸭子，但是其外形和行走方式和鸭子并无二致。相比之下，测试桩只是看起来像鸭子而已

 	模拟对象
 	从实现角度而言，模拟对象更加复杂。模拟对象可以验证待测对象与其协作对象的交互。由于具体实现方式不同，有些模拟对象可以返回硬编码的值，而有些能够提供逻辑的伪实现。模拟对象通常由框架或类库（像EasyMock）动态产生，不过也可以手动实现

刚才提到了，这只是伪实现、测试桩和模拟对象这几个术语的定义方式之一。你一定还会遇到其他的定义，可能与当前定义不完全吻合。这些定义可能来自Gerard Meszaro的网站xunitpatterns.com（参见“Test Double Pattnerns”）。不过从现在起，我会使用模拟对象和测试替身统称以上几种测试替身，除非具体类型在文中有特别含义。

伪实现和测试桩的定义相当直白，它们就是给定接口或类的替代实现。不过第三种测试替身则需要详加解释。我们或许应该试着动手使用模拟对象，来弄清楚表4-1中那复杂的定义到底是什么意思。

4.3.3　模拟对象实战

在代码清单4-1中，我们曾给OrderProcessor传入一个伪PricingService，因为使用真实的PricingService可能需要使用网络，也可能会很慢或者存在其他的问题。代码清单4-1中使用的测试替身属于伪实现，因为其使用了简化的计价算法，对所有的货物都给出十元的折扣。

我们用基于交互的测试方法重写代码清单4-1中的测试，演示复杂的模拟对象的动态自动验证的特性。测试中会使用模拟的PricingService实现。代码清单4-2中演示了如何用EasyMock1库实现基于模拟对象的测试OrderProcessorTest。

1 通常我们会同时使用EasyMock及其扩展，这样EasyMock就能同时模拟具体类和接口了。

 代码清单4-2　用模拟对象重新实现OrderProcessorTest

import static org.easymock.classextension.EasyMock.*;
import static org.junit.Assert.*;
import org.junit.*;

public class OrderProcessorEasymockTest {

 @Test
 public void testOrderProcessorWithEasyMock() throws Exception {
 // arrange
 float initialBalance = 100.0f; /*（以下7行）为测试创建普通对象和数据*/
 float listPrice = 30.0f;
 float discount = 10.0f;
 float expectedBalance =
 initialBalance - (listPrice * (1 - discount / 100));
 Customer customer = new Customer(initialBalance);
 Product product = new Product("TDD in Action", listPrice);
 // record expected collaboration with mock PricingService
 PricingService mock = createMock(PricingService.class); /*（以下4行）为PricingService创建动态模拟*/
 expect(mock.getDiscountPercentage(customer, product))
 .andReturn(discount);
 replay(mock);

 // act
 OrderProcessor processor = new OrderProcessor();
 processor.setPricingService(mock); // 将模拟对象传给待测对象
 processor.process(new Order(customer, product));

 // assert
 assertEquals(expectedBalance, customer.getBalance(),
 0.001f);
 verify(mock); // 让模拟对象验证
 }
}

代码清单4-2中的示例代码首先创建了几个普通对象，然后再为PricingService这个难处理的角色创建了模拟对象。在EasyMock中，所有的模拟对象，自创建时起就处于录制模式。在录制模式下，我们可以录制模拟对象与其协作对象的交互方式，以及模拟对象本身的行为。录制时，只需要调用模拟对象的方法，然后再告诉EasyMock模拟对象对该调用当做何反应，例如该返回什么值，或者该抛出何种异常。如代码清单4-2所示：

PricingService mock = createMock(PricingService.class);
expect(mock.getDiscountPercentage(customer, product)).andReturn(discount);

当录制完期望的协作及行为后，我们应当让EasyMock从录制模式切换到播放模式（replay），模拟对象开始监听各种事件。接着，我们把模拟对象传给待测对象，作为其协作对象。这时，待测类会与其协作对象交互，当然包括我们创建的模拟对象。当实际交互行为与录制的期望行为不符时，测试会失败。

最后，我们用模拟对象作为协作对象执行测试代码，若模拟对象没有因遇到非预期的调用而抛出任何异常，那我们就可以让模拟对象验证是否所有期望的调用都发生了。

测试替身的介绍就此为止。在讨论遗留代码基础上使用TDD前，我们先来谈谈设计，看看这些准则如何帮我们造出可测试性更佳的设计2。

2 毕竟我们不想给接手我们工作的人留下不好的代码，是吧？

4.4　提高设计的可测试性的准则
知道各种类型的测试替身，确实有利于测试代码的维护工作，也可以提高其执行速度。不过这只是提高可测试性的一方面。伪实现、测试桩和模拟对象，或基于状态测试、基于交互测试等，都是解决测试技术问题的基本工具。虽然技多不压身，不过如果从一开始就拿出个好设计，避免各种亡羊补牢的办法，岂不是更好吗？

在用测试驱动的方式写代码时，我们实际上是在做设计，而这些设计会直接影响这些代码将来的友好程度。在编码前先写测试确实能够提高代码的可测试性，但若我们知道哪些设计会提高可测试性，而哪些设计只是饮鸠止渴，也会很有帮助。例如，当我们知道Singleton模式1通常会影响可测试性，那么在写测试时就可以避免把代码向Singleton模式上驱动。

1 http://en.wikipedia.org/wiki/Singleton_pattern。

为了帮您避免可测试性问题，这里列举了一些值得注意的设计准则：

	尽量使用组合（composition）而非继承（inheritance）

	避免使用static关键字，以及Singleton模式

	隔离依赖（Isolate dependencies）

	注入依赖（Inject dependencies）

这份清单当然没有包括所有能提高可测试性的设计准则，不过这四条准则确有成效。一起来研究一下这些准则如何？

4.4.1　尽量使用组合而非继承

如何从各个独立的功能构建出复杂的对象，对代码的可测试性影响很大。在面向对象语言中，继承以及组合可以用来实现此类功能。

继承是指子类从父类继承功能，如图4-2所示。继承是继承体系中重用功能的传统做法。虽然这方法不错，但是继承在设计的可测试性、可维护性以及复杂性方面都有负面影响。

特别是在测试中试图实例化对象时，对象的继承体系有时会带来不必要的麻烦。例如在Java中，我们可能只关注子类的特征，但却必须要提供只有其父类构造函数才需要的各项参数。如果这些参数本身又是很复杂的对象，需要费很多功夫才能初始化，那这项缺点就更加明显了。

图4-2　子类继承了父类的所有功能，不过这使得实例化子类变得有些麻烦

另外，哪怕是极小的修改所产生的影响，都可能在整个继承体系内产生较大的影响，显然这样并不好。继承带来的限制过多，使测试很麻烦。这时，我们不得不考虑另一种替代方法，即组合，如图4-3所示。

图4-3　使用组合能够更灵活的重用类功能。例如，我们可以实例化一个组合的对象，而将其组成部分替换为更容易测试的对象

组合是指通过组装一些稍简单的类来获得一个功能复杂的大类的过程。顶层的组合对象会把工作委托给其各个组成部分，而不是通过调用父类的方法来完成工作。实际上组合是基于对象级别的责任划分，而不是静态的、类级别上的划分。组合比继承稍显麻烦，代码量更多，不过组合能够提高可测试性、适应性以及可维护性，这些优点远大于多出几行代码所带来的麻烦。

4.4.2　避免使用static关键字以及Singleton模式

静态方法调用及Singleton模式也会影响可测试性。取决于待测代码与静态方法或Singleton模式的纠葛程度，在测试中用测试替身替换静态方法可能极其困难。或许很多时候我们用不着替换掉 Singleton或静态方法，但如果想这么做（例如在测试过程中，静态方法或者Singleton实例会试着连接远程服务器），可没那么容易。

图4-4中待测类ClassUnderTest调用了静态方法，或者使用了Singleton。

图4-4　很难用伪实现替换静态方法，因为类的类型信息已经硬编码在代码中了。同样，用getInstance()方法获取的Singleton类也很难用伪实现替换

其实Singleton模式本身并没错，而是其默认实现方式存在问题。有时，我们需要在测试过程中替换掉静态方法或者Singleton的实现。要完成替换，我们需要有一个静态方法，用于替换当前实现，在测试完成后，还需要把替换过的实现恢复原样。

在这种情况下，我建议首先试着把静态方法变为成员方法。现代虚拟机创建对象的开销极低，所以通常只用删去static关键字，把静态引用变为成员方法的调用即可。

欲知静态变量及方法给测试性带来的问题，请参见代码清单4-3。在清单中的代码所描述的情形中，不可能通过简单的继承及覆盖来把方法替换成伪实现。

 代码清单4-3　静态方法的可测试性问题

public class Database {
 public static Object findById(String id) {
 // fetch an object from the database,
 // returning a null if the id is not found
 }

 public static boolean objectExists(String id) {
 return (findById(id) != null);
 }
}

public class TestDatabase {
 @Test
 public void testObjectExists() throws Exception {
 // How can I fake findById() to return
 // "true" or "false" as I wish?
 assertTrue(Database.objectExists("123"));
 }
}

在代码清单4-3所示的代码中，若不修改编译过的字节码是没有办法替换findById方法的，因为待测代码显式地引用了特定的实现。我们没法继承或覆盖这些方法，因为它们全都是静态的2。

2 我们可以修改字节码，但是代价会很大。

使用Singleton模式通常是为了提供单个的访问点。虽然有单个的访问点是个好主意，但若在代码中四散着对这个点的访问就会有问题了。例如，代码清单4-4的代码调用了静态方法来获取依赖。

 代码清单4-4　代码味道：通过调用静态方法获取依赖

public class OrderProcessor {
 public void process(Order order) {
 PricingService service = PricingService.getInstance();
 // use the PricingService object for processing the order
 }
}

这种方法并不好。我们把获取依赖与使用依赖的逻辑混在了一起。简言之，我们需要隔离依赖。

4.4.3　隔离依赖

为了能够方便地用测试替身替换依赖，隔离依赖使其更容易替换非常关键。有几种方法可以解决这个问题：把静态方法的访问移至成员方法，如代码清单4-4所示。多了几行代码，不过这样我们就可以覆盖那方法了，进而消除调用静态方法所导致的紧耦合问题。代码清单4-5为使用隔离依赖的示例。

 代码清单4-5　已消除了代码味道：静态方法的调用包装进了成员方法中

public class OrderProcessor {
 public void process(Order order) {
 PricingService service = getPricingService(); // 通过替换获取依赖
 // use the PricingService object for processing the order
 }

 protected PricingService getPricingService() { /*（以下3行）覆盖返回的测试替身*/
 return PricingService.getInstance();
 }
}

在Working Effectively with Legacy Code3一书中，Michael Feather定义了接缝（seams）的概念：“不用修改直接影响行为的代码就能改变系统行为的那个点”。换言之，在测试期间可以在某个点用一段代码替换另一段代码，而无需修改待测试代码，这个点就是接缝。在代码清单4-5中，从测试用例调用process方法的角度来看，getPricingService方法的调用实际就是接缝。接缝，根据其定义，由一个或几个入侵点（enabling points）构成，即入侵接缝的不同途径。在代码清单4-5中，getPricingService本身就是入侵点。我们可以使用代码清单4-6中的方法将其覆盖。

3 Michael Feathers，Working Effectively with Legacy Code（Addison-Wesley, 2004）。我极力推荐这本书。如果你想让写出的软件能经受得起时间的考验，那么就应该去读这本书。

 代码清单4-6　入侵接缝

public class OrderProcessor {
 public void process(Order order) {
 PricingService service = getPricingService(); // 这就是接缝
 // use the PricingService object for processing the order
 }

 protected PricingService getPricingService() { // 入侵点
 return PricingService.getInstance();
 }
}

public class OrderProcessorTest {
 @Test
 public void testOrderProcessorByExploitingTheSeam()
 throws exception {
 OrderProcessor p = new OrderProcessor() {
 protected PricingService getPricingService() {
 return new FakePricingService(); // 通过入侵点使用接缝
 }
 };
 ...
 }
}

我们刚才看到的接缝属于对象接缝，利用面向对象功能，在调用代码中透明的覆盖方法。还有其他多种类型的接缝（每种语言都不一样），如预处理接缝、链接接缝等。例如，在C/C++中，开发人员可以使用ifdef以及宏（macro）等预处理接缝。而Java开发人员可能把属性文件（property files）、XDoclet标签等配置元素与一些巧妙的Ant脚本技巧结合起来作为接缝使用。又如，可以利用LD_LIBRARY_PATH或CLASSPATH一类的环境变量，替换掉动态库或者JAR文件。

隔离依赖对可测试性及可维护性至关重要。在第二部分中，我们会遇见很多隔离依赖的例子。Michael Feather的著作Working Effectively with Legacy Code也详细讨论了这个问题，不过在继续讲解前，我必须先着重介绍一个非常有用的模式——反转依赖关系，让外部环境注入依赖，而不是在产品代码中自己查找依赖。这种方式能够极其有效地提高可测试性。

4.4.4　注入依赖

依赖注入（Dependency Injection，DI）4是近来软件圈子里的热门话题之一。这种代码组织方式可以减少直接依赖，将其变为间接依赖，或者说把getter变为setter。在把你弄得更糊涂之前，我们来用以前见过的一段代码解释这个概念，见代码清单4-7。

4 这个概念最初叫做依赖反转（Inversion of Control），表示依赖反转了。ThoughtWorks公司的Martin Fowler引入了依赖注入这个术语来更好的表达出概念的本意，即注入依赖而非查找依赖。

 代码清单4-7　getter依赖

public class OrderProcessor {
 public void process(Order order) {
 PricingService service = getPricingService(); // 代码主动获得依赖
 // use the PricingService object for processing the order
 }

 protected PricingService getPricingService() {
 return PricingService.getInstance(); // 代码主动获得依赖
 }
}

这段代码展示了如何隔离依赖，方便以后替换PricingService实现。这里的getter是指getPricingService的默认实现，使用PricingService的静态方法主动获得PricingService的实例。OrderProcessor类与PricingService及其getInstance方法存在耦合关系。虽然这种耦合关系并不会影响可测试性，只需要覆盖getPricingService方法就可以替换PricingService的实现，不过事情还可以变得更简单。

OrderProcessor依赖于PricingService，是指需要访问PricingService的一个实现，这并不意味着OrderProcessor需要知道如何获得这个实现。注入依赖可以解决这个问题，既能使OrderProcessor得到所需的依赖，又不会使其与PricingService过于亲密。图4-5表示反转获取依赖的过程。

图4-5　依赖注入反转了获取依赖的过程

简言之，依赖注入是指让OrderProcessor明确表示“我需要一个PricingService，使用我之前必须先满足我的需要”。具体实现见代码清单4-8。

 代码清单4-8　用依赖注入解决紧耦合问题

public class OrderProcessor {

 private PricingService pricingService; // 用实例变量保存依赖

 /**
 * Hand me my dependency by calling this method.
 */
 public void setPricingService(PricingService pricingService) { /*（以下3行）让其他变量给出依赖*/
 this.pricingService = pricingService;
 }

 /**
 * Please call setPricingService() before invoking me. Thanks.
 */
 public void process(Order order) {
 float price = pricingService.getDiscountedPrice(order) // 直接使用依赖
 }
}

就这样。getPricingService方法魔术般的变为setPricingService方法，用成员变量保存注入的依赖。而且，process方法不再需要主动获得依赖，依赖早已准备好了，就在实例变量中！

如果你在想这种方法会对测试产生何种影响，请参照列表4-9。我们不用再覆盖getPricingServide方法了，待测对象的配置变得一目了然。

 代码清单4-9　有了依赖注入，测试代码可读性更强了

public class OrderProcessorTest {
 @Test
 public void testOrderProcessorWithDependencyInjection()
 throws Exception {
 OrderProcessor p = new OrderProcessor();
 p.setPricingService(new FakePricingService());
 ...
 }
}

很好的办法吧？

虽然依赖注入使代码测试性大有改观，但也要付出一定代价。因为测试能够随意配置各种对象，测试代码比以前更清楚了。不过一旦考虑如何在真实的产品环境中处理这些关系，依赖注入带来的问题就显现出来了，某些人（或某些东西）必须把所有的依赖递给各个组件。

 依赖注入的不同类型

 代码清单4-8及代码清单4-9展示了所谓的setter-based 依赖注入，通过调用setter注入所需的依赖。不过这不是唯一的依赖注入方式。field-based依赖注入，及基于构造函数的依赖注入也很常见。

 field-based注入实际和setter-based注入一样，唯一的区别是在field-based注入过程中，会直接给实例变量赋值，不通过setter，所以不能对注入的依赖进行任何操作。部分由于这个原因，field-based注入通常用在框架代码中，使用反射API给任意对象注入依赖，而不强求开发人员为纯依赖注入而写setter这种的样板代码。

 基于构造函数的依赖注入是指用构造函数参数注入依赖。这种方法比setter-based注入方法要好，因为要使用setter-based注入，程序员必须要清楚以哪种顺序注入依赖。换句话说，用setter-based注入方法，可能会使目标对象处于未完全配置的状态。

 基于构造函数的依赖注入方式也有不足，因为构造函数并不能体现在接口上，所以不能通过接口向对象注入依赖5。另外，把所需的各种依赖作为构造函数参数，可能会使构造函数参数列表过长6，含义模糊（这有可能是设计缺陷的象征）。

 5 通过接口注入依赖并不是一个好办法，因为对象需要何种依赖完成自己的功能属于具体实现细节，并不应该体现在接口上。接口上只应该存在对外提供的功能，具体实现类上可以有各种setter用于注入依赖。——译者注

 6 如果构造函数参数过长，可以考虑类的职责是否划分得清楚，因为若一个类需要太多依赖，说明这类做了太多的工作。此时可以考虑把相对独立的功能作为一个新类分出去，相应的，把构造函数中的依赖注入也挪至新类中。直到类的职责功能变得一目了然，这重构工作就算是完成了。——译者注

理论上，我们需要抽象工厂（abstract factory）或工厂方法（factory method）来做处理依赖。而实际上，我们可以利用控制逆转容器（Inversion of Control container）来做这项工作。这类容器可以有效帮我们处理依赖关系，集中配置各项依赖（通常使用XML或者属性文件等）。这类容器包括Spring框架中的BeanFactory7、PicoContainer8及它的兄弟NanoContainer9。

7 Spring框架（www.springframework.org）是个相当流行的开源框架，提供了面向切面编程（Aspect-Oriented Programming）、Web应用的MVC框架、以及依赖注入等支持）。

8 PicoContainer （www.picocontainer.org）是第一个广泛应用的开源DI/IoC框架及容器。这个工具功能相当简单，只提供编程形式的配置，而且一个接口只能有一个实现。

9 NanoContainer （www.nanocontainer.org）也是开源的。其扩展了PicoContainer，提供了一些新功能。

在第二部分中，我们将会再次见到DI及IoC。在这之前，我想先谈些别的内容。首先，会提及单元测试的常用模式，讨论处理遗留代码这一棘手问题的几种不同办法。内容不少，赶紧开始吧。

4.5　单元测试模式
单元测试是TDD中的重要一环，所以了解单元测试的常用模式很有必要。在这一节中，我们将会了解不少模式，包括：

	写断言的模式

	组织及构建夹具的模式

	测试类总体模式

这些知识点相当简单，连UML图都用不上，所以讲解起来会很快。先从断言的五个模式开始。

4.5.1　断言模式

断言对测试至关重要，若没有断言，测试就失去了本来意义。在第一部分中，我们已经看到了很多测试和断言，第二部分中还有更多。接触过单元测试及断言后，现在是时候给那些常用模式起个名字了。这里提到的模式都是基于Gerard Meszaros在xunitpatterns.com中的杰出工作的。在Gerard的网站上可以找到一些模式的变体和这些模式的更详细的描述。

现在我们来看第一个断言模式，结果状态验证。

	结果状态验证（Resulting State Assertion）

结果状态验证是单元测试中最常用的方法。这种方式是指先调用对象的功能，然后验证其内部状态与期望的是否一致，如下所示：

@Test
public void sizeOfListReflectsItemsAddedToIt() throws Exception {
 List<String> list = new ArrayList<String>();
 list.add("something");
 assertEquals(1, list.size()); // state verification
}

测试验证了调用add方法后列表对象不为空，注意到了吗？严格的讲，这个测试没法保证正确性。如果size方法总是返回1测试也能通过。在这种情况下，虽然这个测试足以表达作者的本意，不过若能同时验证之前的状态就更好了，这就是防卫断言模式的作用。

	防卫断言（Guard Assertion）

防卫断言用来明确的验证调用功能前对夹具所做的各项假设。下面这个简单的例子表明了防卫断言的用途：

@Test
public void listIsNoLongerEmptyAfterAddingAnItemToIt()
 throws Exception {
 List<String> list = new ArrayList<String>();
 assertTrue(list.isEmpty()); // guard assertion
 list.add("something");
 assertFalse(list.isEmpty()); // state verification
}

请注意，在调用add方法前，防卫断言保证了空列表的isEmpty方法正确的返回了true，确保所测试的确实是期望的行为。

防卫断言模式常常与结果状态验证模式一同使用。这两种方法常常结合在一起，首先验证调用前状态与期望的一致，然后调用功能，验证结果状态，与上面的例子完全一样。

不过有时候，使用防卫断言是为了保证夹具的初始状态的正确性。这时，可以把防卫断言移至初始化方法的末尾，因为这些断言实际上是为了验证初始化方法。

	差值断言（Delta Assertion）

有时在进行测试时我们需要在控制权不完全在自己手中的代码基础上工作。尤其是我们的测试可能并不能完全控制夹具。由此，在不能硬编码夹具状态的情况下，如何写出可靠、健壮及自检查的测试呢？解决方法是不要验证绝对值，而是验证代码执行前后的差值。

代码清单4-10展示了差值断言的基本逻辑。

 代码清单4-10　差值断言模式的例子

public class TestAddingToArrayList {
　
 private ArrayList<String> list;
　
 // setup method omitted for brevity
　
 @Test
 public void sizeOfListReflectsItemsAddedToIt() throws Exception {
 int sizeBefore = list.size(); // record the "before" state
 list.add("something");
 assertEquals(sizeBefore + 1, list.size());
 // delta verification
 }
}

这个例子很简单，但却很好地突出了这种模式的关键点：先记录下状态，执行完后把当前状态与保存状态做对比，验证差值是否正确。

不可否认，这种测试写起来更麻烦，不过比起结果状态验证，差值断言有独特的优势。这种方法更容易抓住本质，而不会把执行结果与某个貌似随意的值做比较，也不会让我们那可怜的同事努力地试图搞清楚为什么列表长度一定要等于某个魔术数字（magic number）。努力让测试清楚地表达出本意，这么做永远没错。这也是我们下个模式的目标。

	自定义断言

有时候用于验证期望的代码比调用待测对象所需的代码要多得多。这时（特别是当出现了不止一次时），可以从测试代码中提取出一个自定义断言，把复杂的验证逻辑封装进一个小巧的方法之中，以备测试代码调用。代码清单4-11中的代码是这种模式的一个小例子。

 代码清单4-11　自定义断言方法的例子

public class TestMeetingCalendar {
　
 @Test
 public void timeslotsAreOnWeekdays() throws Exception {
 MeetingCalendar calendar = new MeetingCalendar();
 // omitted: add appointments to calendar until
 // end of office hours next Friday
 Date time = calendar.nextAvailableStartingTime();
 assertIsDuringOfficeHoursOnWeekday(time);
 // encapsulate logic
 }
　
 private void assertIsDuringOfficeHoursOnWeekday(Date time) {
 // actual assertion logic omitted for brevity
 }
}

自定义断言的一个常见用途是做不同类型的模糊匹配。例如，我们可能希望用对象的一部分属性来比对两个对象。另外一个常见原因是对象并没有正确的实现equals方法，同时我们还不能对其进行修改。此外，创建自定义断言可以在验证失败后能够提供更有意义的错误信息（注释21：有意义的出错信息非常有用，特别是测试变得过大时）。

下面要介绍的模式与前面看到的有一定的差别，这模式叫做交互断言，是基于交互的测试不可或缺的一部分。

	交互断言（Interaction Assertion）

我们的最后一个验证模式称为交互断言。交互断言很有趣，其并不验证代码结果的正确性，而是验证代码与其协作对象的交互行为的正确性。代码清单4-12中的例子讲明了此问题。

 代码清单4-12　交互验证的例子

public class TestExpectedInteractions {
　
 private List<Customer> delivered; // ❶用测试替身录制交互行为
　
 @Before
 public void setup() {
 delivered = new ArrayList<Customer>(); // ❶用测试替身录制交互行为
 }
　
 private class MockCustomer extends Customer {
 @Override
 public void onPaperDelivery(DailyPaper paper) { /*❶（以下3行）用测试替身录制交互行为*/
 delivered.add(this);
 }
 }
　
 @Test
 public void paperBoyShouldDeliverPapers() throws Exception {
 Customer david = new MockCustomer();
 Customer esther = new MockCustomer();
 PaperBoy paperboy = new PaperBoy();
 paperboy.addToRoute(david);
 paperboy.addToRoute(esther);
　
 paperboy.deliver(new DailyPaper());
 assertTrue(delivered.contains(david); /*❷（以下2行）验证交互是否正确*/
 assertTrue(delivered.contains(esther);
 }
}

代码清单4-12中的测试类相当简单。我们❶为每一个测试创建一个空列表对象，用测试替身把交互行为录制到列表中。这样，我们就可以调用产品代码，让报童投递日报，然后❷用交互断言验证报童投递路线上的两个顾客都收到了报纸。

代码清单4-12中的测试替身实现类似于EasyMock等模拟对象库的内部工作机理。这些库把实际的方法调用及期望的方法调用记录到一个类似于列表的数据结构中，然后把期望的列表与实际列表相比较。值得一提的是，代码清单4-12的测试没有验证报纸是否真被投递了，只验证了报童骑着自行车在两个客户房前绕了一圈，因为我们确实没有验证投递的到底是什么东西！

在这个例子中，我们整个夹具都由自制的、基于交互的测试替身，即模拟对象所组成。实际上，若有必要，我们可以在一个测试中混合使用基于状态的测试方法及基于交互的测试方法。例如在代码清单4-12中那个报童的测试中，我们可以用交互断言验证报童正确的投递了报纸（正如代码清单4-12所示），用结果状态断言方法来验证报童走完投递路线后一份报纸都没有剩下。

断言部分就介绍到这里。现在我们回过头来看初始化及清除夹具的相关模式。

4.5.2　夹具模式

夹具是测试的重要组成部分。夹具的结构通常并不简单，我看到了不少巨大的夹具，用巨大的初始化方法创建出巨多的对象，这方法大到一屏都显示不下。无论在产品代码中，还是测试代码中，这种庞杂的代码都是个问题。还好，这些年来我们发现了不少模式，用于解决这类问题。

我们将会谈到3个此类模式。前两个模式关于在夹具中创建对象，第三个关于在测试结束时处理创建出的对象方法。准备好了吗？

	参数化创建方法

典型的夹具中的大部分对象是所谓的实体对象（entity objects），用来表示业务领域中存在的实体或者实际概念。这类对象通常有很多属性，我见到的大多数糟糕的夹具就是因为填充这些属性，尽管不少属性对当前测试根本不重要。

下面的代码示例展示了一个填充大量属性的初始化方法，其中不少属性对当前测试毫无用处。

@Before
public void setUp() throws Exception {
 alice = new Person();
 alice.setId(1L);
 alice.setFirstname("Alice");
 alice.setLastname("Adams");
 alice.setSsn("111111");
　
 billy = new Person();
 billy.setId(2L);
 billy.setFirstname("Billy");
 billy.setLastname("Burke");
 billy.setSsn("222222");
　
 clark = new Person();
 clark.setId(3L);
 clark.setFirstname("Clark");
 clark.setLastname("Cable");
 clark.setSsn("333333");
　
 alice.isInLoveWith(billy);
}

参数化创建方法（Parameterized Creation Method）可以解决此问题，把不重要的属性从初始化方法中移到单独的创建方法中。此创建方法接受变量的属性值作为其参数，而把常量或者随机值直接赋给不重要的属性。此外，参数化创建方法也可以填充那些对当前测试并不重要的属性，同时保证属性的合法性（例如唯一性）。

代码清单4-13演示了如何使用参数化创建方法。这样可以简化初始化方法，隐去不重要的属性。（在这个例子中，我们可以假设人的姓和名是测试的关注点。）

 代码清单4-13　参数化创建方法的例子

public class ParameterizedCreationMethodExample {
　
 private Person alice, billy, clark;
　
 @Before
 public void setUp() throws Exception {
 clark = createPerson("Clark", "Cable"); /*❶（以下3行）在初始化方法中重要参数可见*/
 billy = createPerson("Billy", "Burke");
 alice = createPerson("Alice", "Adams");
 alice.isInLoveWith(billy);
 }
　
 private Person createPerson(String firstName, String lastName) {
 Person person = new Person();
 person.setFirstname(firstName);
 person.setLastname(lastName);
 person.setId(UniqueNumber.next()); /*❷（以下2行）不重要的属性隐藏在创建方法中*/
 person.setSsn(String.valueOf(UniqueNumber.next()));
 return person;
 }
　
 @Test
 public void aliceShouldAcceptWhenProposedToByBilly()
 throws Exception {
 billy.proposeTo(alice);
 assertTrue(alice.isEngagedWith(billy));
 }
}

从代码清单4-13中我们可以看出，使用参数化创建方法，只有❶重要的属性在初始化方法中可见，其余不重要的属性都❷隐藏在了创建方法内部。这样，创建及填充Person对象的过程不存在任何重复，我们可以立即理解初始化方法所做的工作，不用来回阅读代码。夹具的初始化工作都集中在了要点上。

参数化创建方法也会有特例，例如有时我们不在乎创建对象的具体参数，只要这些值合法，例如每个人的身份证号码必须唯一，且长度有效即可。另外，我们也可能用多种不同的创建方法来创建不同的对象，这在夹具中也很常见。这时就需要使用下面要介绍到的对象母亲（Object Mother）模式了。

	对象母亲

重构测试类，在类中加入创建方法从而消除重复，这种修改一开始效果会很好。不过不久我们就会发现不同类的创建方法间存在重复。接下来自然要把创建方法移到单独的类中以消除重复。对象母亲模式就是创建方法的聚合体。

实际上，正如Peter Schuh和Stephanie Punke在其文中所述1，对象母亲是一个对象或者一组对象的集合，其特征如下：

1 http://www.agilealliance.org/system/article/file/910/file.pdf。

	提供一个完整的业务对象，此对象所有的必填属性也是完整的业务对象；

	在整个生命周期内都可以返回被请求的对象；

	可以定制所返回的对象；

	测试过程中可以更新对象；

	如果有必要，可以在测试结束时回收对象及所有关联对象。

总的来说，对象母亲模式是一个复杂的对象工厂，用于创建领域对象（domain object）的整个对象网络（object graph），还可以创建出不同状态下的实例。此外，对象母亲也可以提供方法修改某个领域对象，例如在对象间建立关联关系、移除关联关系、或者把对象设置为特征状态。

除了可以消除测试代码中的重复，对象母亲模式还可以使TDD的初学者方便的获得需要的对象，这可以鼓励他们多写测试。若创建对象过于麻烦，他们也许会打消写测试的念头。

不少团队在开发过程中都会定义一套人物角色（personas）2，若把对象母亲与这套角色结合使用，效果会更好。例如，若团队定义了爱丽丝、贝利和克拉克等人物角色，每个人都代表交易系统中的不同角色，这时对象母亲应该把这些人物作为其API接口。这种概念上的关联可以帮我们更容易的编写测试，不用翻查API，更不用深入创建方法内部弄清楚该使用哪个对象做测试。我们只需要说：“好，我需要一个购买订单，这订单由克拉克提交，吉姆审批。”

2 Alan Cooper，The Inmates are Running the Asylum (SAMS, 1999)。

虽然对象母亲是个强有力的工具，能够有效的促进测试的编写，不过构建出整套对象母亲需要不少时间。所以，我建议小步重构当前的测试代码，起先可以引入紧凑的创建方法，最后把这些创建方法及其提供的测试数据整个移到对象母亲中。

还记得几页前提到的参数化创建方法吧？还有一个使用创建方法的原因我们尚未提及，它和自动清理（automated teardown）有关。

	自动清理

在测试框架（如JUnit）中之所以需要清理方法，是为了执行测试后做必要的清除工作，例如在集成测试后删掉数据库中保存的数据，或者移除测试过程中创建出的文件。假如清理逻辑很复杂，或者需要清除的对象过多，我们的测试代码会变得很混乱，也很容易漏掉某些需要清除的对象。这会使后续的测试出现问题，而且极难调试或跟踪出问题的源头。

自动清理模式可以解决这类问题。它把清除逻辑封装到一个单独的类中，把触发这类逻辑的代码与创建对象的代码放在一起，如图4-6所示。

图4-6　向注册表内注册一个夹具对象使我们可以很容易的在夹具清理过程中清理所有注册过的对象

可以看出，在自动清理模式中，夹具的初始化方法不仅仅创建出了夹具对象，而且把这些对象添加到测试对象注册表中3。这注册表只不过是一个对象引用的集合，当夹具的清理方法触动注册表时，注册表会清除每一个注册了的夹具对象。

3 这两步通常都封装在一个创建方法中。

虽然自动清理模式在集成测试中应用最为广泛，不过这种模式有一个变体对单元测试也极为有用：用创建方发创建出可自验证的模拟对象，同时保存所创建对象的引用，将来可以在某个方法中统一调用。换句话讲，我们可以直接调用replayAll或者verifyAll等方法来验证所有模拟对象都交互正确，而不用挨个为所有模拟对象调用replay或verify方法。

迄今为止，我们已经见到了一些在细节层面上的断言模式和初始化及清除夹具的模式。现在该了解一些总体上编写测试的模式和技巧了。

4.5.3　测试模式

我们已经接触到了防卫断言到对象母亲等一系列测试相关模式。接下来我们会先学习一些更为通用的测试模式，然后是本章的最后一部分内容，即如何在遗留代码上工作。下面要介绍的这些模式主要是关于如何可使代码的可测试性更佳，以及使测试代码更紧凑，结构更好的Java语言技巧。

我们要介绍的第一个模式，参数化测试，主要用于编写数据驱动的测试，读取不同的数据集，重用同样的测试逻辑。

	参数化测试

有时，我们会发现我们编写的测试几乎一模一样，只有个别输入值不同，而测试逻辑完全相同。这时，我们或许可以把这类测试重写成参数化测试。

这类测试的基本要点是，只编写一个测试方法，包含应用于测试数据的测试逻辑。当然，显然还需要一个方法提供参数化数据，再用一些代码绑定给定的测试数据到测试方法上。

还好，JUnit4为此提供了很多便利，要创建参数化测试只需要给测试类加上相应的注释（annotation）即可。代码清单4-14是在JUnit4中编写参数化测试的例子。

 代码清单4-14　在JUnit4中编写参数化测试的例子

import org.junit.runner.RunWith;
import org.junit.runners.Parameterized;
import org.junit.runners.Parameterized.Parameters;
@RunWith(Parameterized.class)
public class ParameterizedTest {
　
 @Parameters /*❶（以下2行）提供参数化数据*/
 public static Collection<Object[]> parameters() {
 Object[][] data = new Object[][] {
 { 0, 0, 0 }, { 1, 1, 0 },
 { 2, 1, 1 }, { 3, 2, 1 },
 { 4, 3, 1 }, { 5, 5, 0 },
 { 6, 8, -2 } };
 return Arrays.asList(data);
 }
　
 public int expected, input1, input2;
　
 public ParameterizedTest(int expected, int input1,
 int input2) { // ❷数据通过构造函数绑定
 this.expected = expected;
 this.input1 = input1;
 this.input2 = input2;
 }
　
 @Test /*❸（以下2行）每个对象数组调用一切测试方法*/
 public void executeParameterizedTest() throws Exception {
 assertEquals(expected, new Calculator().add(input1,
 input2));
 }
}

代码清单4-14中的参数化测试由三部分组成。首先，我们用一个标有@Parameters的静态方法提供参数化数据。此方法返回一个对象数组的集合，每一个数组都表示一个数据集或者一个测试实例❶。换句话讲，JUnit会为每一个对象数组都重新实例化一次测试类。JUnit❷会把对象数组作为构造函数参数传给测试类，通常测试类会把这个参数保存在内部变量中，在❸测试方法中使用。最后，JUnit会调用标有@Test的测试方法。这就是整个测试过程。

参数化测试模式（Parameterized Test Pattern）可以很好的用来实现数据驱动测试。一旦写好了一个类似于代码清单4-14中的架子，添加新测试就非常方便了，只要加新的对象数组就行。

不过，添加一个对象数组不是创建新测试用例的最佳方法。如果代码清单4-14中的测试，每一个测试用例都是一行代码的断言，那么可读性会好得多。确实，当测试数据量非常大，而且是从XML或ASCII文件类的外部数据源获得，那么使用参数化测试会很合适，解析外部数据源的工作可以交给标有@Paramters的方法做。这样，测试类难免会变得稍微有些复杂，不过好处是可以以更合适的语法和文件格式描述测试数据。

不过需要处理大量数据的测试毕竟是少数，我们接下来会讨论些更常见的东西。因为很多对象都和其他对象有依赖关系，或许接下来应该介绍自分流（Self-Shunt）模式。

	自分流

前面在4.3节中，我们讨论过几种不同的测试替身，不过没有提及自分流模式。自分流模式也是一种测试替身，同时也是我们的测试类。自分流模式首先由Micheal Feathers提出4，这种模式是指在测试中，测试类本身充当测试替身。请参见代码清单4-15中的例子。

4 http://objectmentor.com/resources/articles/SelfShunPtrn.pdf。

 代码清单4-15　自分流模式的例子

public class SelfShuntExample implements PricingService { /*❶（以下5行）实现PricingService接口*/
　
 @Override
 public float getDiscountPercentage(Customer c, Product p) {
 return 10.0f;
 }
　
 @Test
 public void testOrderProcessorWithMockObject() throws Exception {
 // some setup omitted for brevity...
 OrderProcessor processor = new OrderProcessor();
 processor.setPricingService(this); // ❷ 将“this”传给待测对象
 processor.process(new Order(customer, product));
 assertEquals(expectedBalance, customer.getBalance(),
 0.001f);
 }
}

从代码清单4-15中可以看出，测试类实现了PricingService接口❶，这样我们就可以直接给待测类传入this❷，作为其协作对象，而不用重新创建一个测试替身，或者写出匿名类这样的凌乱代码。对于这种简单的情况，匿名类也是个不错的选择，不过随着方法数量的增多，匿名类代码也会变得越加凌乱，这时最好能使用自分流模式，或者单独的测试替身类。

要想在需要的地方快速创建出简单的测试替身，Shelf-Shunt是个绝佳的工具。不过随着测试替身的逻辑变得更加复杂，把这些逻辑移到独立的测试替身中会更合适。即便如此，我们要知道，独立的测试替身也有缺点。如果我们想在测试方法间或者测试替身间共享对象及数据，无间内部类（Intimate Inner Class）也许是个更好的选择。

	无间内部类

有时我们会想在测试类间或者测试替身间共享对象及数据。这问题有几种解决办法（例如添加个getter），无间内部类作为解决方法之一，可能并不很一目了然。不过这并不意味着这种方法不好。实际上，非静态内部类那能够读取和修改测试类成员变量的能力，可以使测试代码更紧凑，比起用getter暴露测试替身内部状态要好得多。

我们可以用一段代码展示无间内部类的作用。代码清单4-16中的示例代码测试的行为是，Server对象在初始化时会从ThreadFactory中获取一个Thread对象，停止时会挂起这个线程。解决办法是使用无间内部类，它将一个新创建的Thread实例赋给包含测试类的thread成员变量。

 代码清单4-16　无间内部类的例子

public class IntimateAnonymousInnerClassExample {
　
 private StartStopSynchronizedThread thread; // ❶在测试类和测试替身间共享
　
 @Test
 public void
 testStartingAndStoppingThreadsThroughAnExecutorService()
 throws Exception {
 Server server = new Server();
 server.setThreadFactory(new ThreadFactory() { /*❷（以下6行）无间内部类*/
 public Thread newThread(Runnable task) {
 thread = new StartStopSynchronizedThread(task); // ❶在测试类和测试替身间共享
 return thread;
 }
 });
 server.start();
 thread.shouldBeStartedWithin(1, TimeUnit.SECONDS); // ❸测试即可访问共享域
 server.stop();
 thread.shouldBeStoppedWithin(1, TimeUnit.SECONDS); // ❸测试即可访问共享域
 }
}

可以看到，无间内部类❶使用了测试类中的thread成员变量❷，这样测试中就可以访问thread的成员变量做验证了❸。

从技术层面上，无间内部类可以实现为匿名类或者内嵌类。像代码清单4-16中的内部匿名类，可能会变得不好控制，但是它可以访问创建它的方法中的final变量。相比之下，内嵌类更清楚一些，不过数据访问上存在限制。两种方式都可以访问测试类的成员变量。

说到访问成员变量，下一个模式专门介绍如何访问那些本不该被访问到的成员变量。

	特许访问（Privileged Access）

有时候你可能想改变一点系统现有代码，以测试新添加的代码，但由于某种原因，不能够修改那些代码。这时，“侵犯”现有代码的隐私，通过反射（reflection）API直接读取内部数据，就可以绕过问题，写出测试了。

JUnit邮件列表5的文件区有PrivilegedAccessor类的源代码，可以用来做这类工作。另外JUnit-Addons的开源库6里包含PrivateAccessor类、Langhing Panda社区开发的BeanInject工具7，也有类似的功能。例如用BeanInject中的Inject类，我们可以只用一行代码就把一个测试替身强行的赋给某个类的私有成员变量：

5 http://groups.yahoo.com/group/junit/files/src/PrivilegedAccessor.java（必须先注册才能访问）。

6 http://junit-addons.sourceforge.net/junitx/util/PrivateAccessor.html。

7 http://www.laughingpanda.org/mediawiki/index.php/Bean_Inject。

Inject.staticField("foo").of(LegacyCode.class).with(ourTestDouble);

若从一开始就使用TDD，那么这种访问其他类的私有变量的方法并不很有用，但是如果在那些编写时没有考虑可测试性的代码基础上工作，这些技巧和工具可以节约很多时间。但是如果我们可以改变遗留代码，那么就不要使用这些反射技巧了。下一个模式就是讲如何改变代码，提高代码的可测试性。

	额外构造函数（Extra Constructor）

计算机世界里面充斥着大段大段怪物般的代码。与这种代码一起工作，很容易头昏脑胀，因为要实例化一个类，可能需要准备一大堆其他对象。这问题很可能是因为没有正确地隔离依赖。当然相应的解决方法是恰当地隔离依赖，把整个架构往依赖注入方向引导，不过这需要花费很多时间。这时，可以使用额外构造函数模式作为临时解决方法。

因为我们没法从外部替换掉依赖，所以要从内部替换。因此，需要给待测类添加额外的构造函数，把依赖作为参数传入，保存到相应的成员变量中，替换真实的依赖。

若原先的构造函数会创建或配置依赖（若不是，我们也可以把依赖配置代码移至这里），我们则可以修改原先构造函数，使其调用新构造函数，如代码清单4-17所示。

 代码清单4-17　用额外构造函数暴露依赖的例子

public class LogFileMerge {
　
 private URL logFileA, logFileB;
　
 public LogFileMerge() { /*❶（以下4行）添加额外的构造函数*/
 this(new URL("http://server1/system.log"),
 new URL("http://server2/system.log"));
 }
　
 LogFileMerge(URL a, URL b) { /*❷（以下4行）测试所用的依赖*/
 this.logFileA = a;
 this.logFileB = b;
 }
　
 ...
}

代码清单4-17中的例子很简单，不过却很好的演示出了额外构造函数模式的用途。在待测类LogFileMerge中，❶原有构造函数创建出两个硬编码的网络地址，赋给server1及server2。这里有两个问题，其一，我们不想让单元测试访问网络。其二，要确认两个服务器中都包含我们期望的Log信息可不是件容易的事。

因此，与其在原有的构造函数中直接给私有成员变量赋URL对象，不如引入❷额外构造函数，让原有构造函数调用新构造函数。让额外构造函数对其他包也可见，我们的测试就可以用其构造出LogFileMerge类，传入URL对象，指向本地文件等，而非网络地址。

再强调一遍，这种模式只是用来弥补非TDD方式开发出的不可测的代码。下一个，也是最后一个模式，同样是关于如何在这种遗留代码中进行TDD的。

	测试专用子类

违反单一职责原则（Single Responsibility Principle）8，是我编程生涯中常见的另一个反模式（anti-pattern）。假如我们正在测试驱动某个记账功能，需要一些复杂的信用卡处理服务。这些服务由同一个类提供，这类由公司内的其他团队开发。

8 http://www.objectmentor.com/resources/articles/srp.pdf。

假设卡号验证逻辑藏在一个protected方法后面，因此信用卡号的验证必须通过某个商业服务提供商才能完成，如下段代码所示：

public class CreditCardProcessing {
 public boolean isValid(String cardnumber) {
 return validationCodeMatches(cardnumber)
 && cardIsActive(cardnumber);
 }
　
 protected boolean validationCodeMatches(String cardnumber) {
 // validation logic omitted for brevity...
 }
　
 protected boolean cardIsActive(String cardnumber) {
 // access to merchant system's web service
 // omitted for brevity...
 }
}

假如由于公司制度和代码所有权等问题，我们无法修改此类。这种情况该如何处理？除了把验证逻辑复制到别处去测试，制造出大堆重复代码外，还有其他办法吗？

这时测试专用子类可以帮我们解决问题。在信用卡的例子中，我们可以创建CreditCardProcessing的子类，覆盖cardIsActive方法，让其总返回true。我们可以利用这个半真半假信用卡处理服务来测试其他部分的代码。只要我们不特别区分信用卡无效的缘由，这种方法就没有问题。

暴露行为或状态的子类是测试专用子类的另一个常见变体，在这种情况下，我们不需要修改类的工作方式，只是需要获得类的内部状态或者想要了解外部API被调用后其内部会如何运作。再强调一遍，若代码都是用TDD驱动出来的，代码很干净漂亮，那么这些方法都没用。只有在处理不怎么样的遗留代码时这些方法才能派上用场。

说到糟糕的遗留代码，我们在下一节中将进入遗留代码的世界，讨论在没有测试的代码及糟糕设计的代码包围的情况下如何进行TDD。

4.6　在遗留代码基础上工作
遗留代码通常是指其他人以前写的代码，说白了就是老代码。糟糕的老代码！遗留代码之所以不受欢迎，不是因为它的年代久远，而是因为遗留代码通常很难读懂，错误也不少，而且没法判定改动一处是否会使其他的某部分功能出现问题。基于这种想法，Michael Feathers在其《修改代码的艺术》一书的前言中，把遗留代码定义为“没有测试的代码”1。

1 Michael在一篇同名文章中首次提出了这个定义（http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf），不过这个概念直到书出版后才变得流行。无论如何，我认为这个定义还是很不错的。

 注意　如把遗留代码定义为“没有测试的代码”，那么如果非测试先行地写代码，就像是在写瞬时遗留代码。

或许我们中的大部分人都不是在理想状况下进行开发，而是在现有系统基础上进行维护，继续开发，或是与某个已经上线了几个月、几年、甚至几十年的系统上进行集成。

那么如何在遗留系统基础上进行测试驱动开发？在你预订Michael的那本遗留代码工作的圣经的同时，我会试着总结如何用测试驱动的方法更改遗留代码。

4.6.1　测试驱动遗留开发

在遗留代码基础上进行测试先行的开发，正如和项目或团队中其他根本不写测试的人一起工作一样。我们首先为要改动的代码编写测试，这可能要在没有测试做保证的情况下先移除某些依赖。这步骤将比平常慢许多。不过别灰心，移除这些依赖、补全测试，回报立竿见影。

Michael在书中阐述了在遗留代码基础上工作的过程，如图4-7所示。此过程试图把改变遗留代码变为一个严格的软件开发活动，而不是敲几下键盘然后开始对代码进行跟踪调试的随意行为。

图4-7所示的过程可以分为以下几个主要过程：

	分析变化

	准备变化

	测试驱动变化

开始改动时，当前的代码已经很稳定了，我们要在这个基础上改变系统的部分代码。例如，我们可能期望添加个新的配置项，用于控制系统行为。从这个状态起，我们会历经3个阶段：分析变化，准备用安全、可控的方式引入变化，最后测试驱动该变化。最终得到包含新变化的代码。

接下来，我们将详细讲解每个阶段，讲述图中的5个步骤究竟是什么含义。

图4-7　在遗留代码基础上工作的过程

4.6.2　分析变化

当着手分析变化时，我们首先要确定变更点（change point）。变更点是指引入变化时需要修改的那部分代码。实际上无论是遗留代码还是其他类型的代码，改动前都需要先确定变更点，其主要的区别在于遗留代码比起用单元测试这“文档”详细描述过的类和方法更难理解。

当确定需要修改的部分后，我们就可以进而确定出测试点（inflection point或test point）。测试点是指我们所修改的代码的“下游”部分，是指变更点变化后影响到的其他部分代码，例如变更点周围的函数调用等。图4-8中描绘出了采用近距测试点的情形，在改动的代码附近进行测试。

图4-8　近距测试点通常能够紧密的覆盖变更点，能够较容易地详细测试到当前行为

不过有时，像图4-9那样在距离变更点更远些的地方找出测试点也合乎情理。外部系统的网络、变更点周围写入的日志信息等就是这种远距测试点的例子。有时甚至把系统的持久化数据源作为测试点都不为过。实际上就是在编写测试的容易程度及这些测试能够提供保障性之间做出权衡。

图4-9　远处的测试点，顾名思义，覆盖了更多代码，因此可能会消除在分析中漏掉的由变化所导致的副作用

近距测试点能够提供更贴近局部的检查点，在信号左右不会有太多噪声干扰。另一方面，远距测试点，则更可能找出分析中没有发现的其他副作用，不过也会导致编写测试时花费更多功夫，因为这时不会有变更点附近才能够得到的详细信息。

分析完代码，检查过变更点及测试点后，我们会很清楚哪些代码该做变动，以及该在哪里加测试。下一阶段，我们会用一种安全的、测试驱动的方式引入这些改动。

4.6.3　准备好变化

一旦确定好变更点及测试点，我们就可以为系统的当前行为特性添加测试了。我们可能要小心地移除依赖，暴露出依赖的接缝，方便以后测试。

我们编写的覆盖测试点的测试通常称为塑形测试（characterization tests），因为这类测试只是描述出当前功能，而不管这些功能是否正确。塑形测试通常也是学习测试，都是用来验证确定变更点时所作的假设。

一旦有了足够的塑形测试，就可以放心进入我们的测试驱动遗留开发过程的第三阶段了，即引入变更。

4.6.4　测试驱动变更

当我们围绕变更点及测试点的测试的覆盖率足以让我们放心时，就可以着手改动代码，添加新功能了。当做出改动时，塑形测试可能告诉我们这些改动是否引入了问题，新添加的测试会告诉我们新引入的功能是否工作正常。最后，改变完成，所有的测试都通过了，我们一如既往的重构代码，享受自动化测试带来的便利。

这就是在遗留代码基础上工作的大致过程。正规的TDD周期和上面描述的过程主要的区别在于我们必须先为已有的行为添加测试，再为新功能添加测试，而且我们会常常在没有安全网保护的情况下做出一些小的移除依赖的工作，以方便测试的编写。要更细心一些才行。

4.7　小结
在第一部分的最后一章中，我们了解了一些测试驱动开发人员的高度机密。这世界上没有银弹1，它们只不过是些技术而已。现在它们已经躺在了我们的工具箱内，必要时可随时使用。

1 Fred Brooks搞错了。实际上是有银弹的，只不过没有狼人而已。

一开始，我们探讨了如何编写测试，介绍了一些测试选择技巧。有了这些技巧，选择测试时有了更多的依据。然后我们转而讨论最为基础的技术，如何使测试通过。这些技术有：伪实现、用三角定位法逐渐逼近正确的功能实现、及时常遇见的显而易见的实现。接着，我们简要陈述了测试驱动的三项准则：毫无保留的重构，尽快变绿，出了问题后放慢速度。

我们也讨论了几个重要的测试概念。我们把夹具定义为测试执行的上下文环境。我们研究了测试替身的多彩世界，学习了它的分类，包括：伪实现、测试桩及模拟对象。接着，我们比较了基于状态的测试及更为复杂的基于交互的测试。

通过深入地探讨伪实现、测试桩，特别是模拟对象，我们对测试替身的理解也更加细致。然后我们转而讨论提高可测试性等更高层次的准则。我们讨论了继承及组合，讨论了静态方法和Singleton模式的潜在问题。在讨论完用接缝解决依赖问题后，我们进一步讨论了依赖注入带来的好处。

在理解了测试的重要概念，及具有良好的可测试性的设计的准则后，我们回到了模式方面的讨论。这些模式不少源自Gerard Meszaros的xunitpaterns.com。我们探讨了单元测试的相关模式，从不同断言间的微小差别，到初始化及清除夹具的大家伙模式。

我们的模式乐园之旅正式结束啦。在旅程的最后，我们介绍了六个generic测试模式，其中不少是专为处理遗留代码而设计的。在本章的最后部分，我们讨论了处理遗留代码的技巧，这些技巧都是从Michael Feathers那里借来的。

无论使用的是什么技术，这些技巧基本上天天都会用到。在第二部分，我们将集中讨论如何在Java EE技术上应用TDD。Java EE技术威力巨大，不过要想在这平台下验证自己的代码是否编写的正确，则要费尽周折。或许这只是假象？一会儿便知。

狂野之旅即将开始，挺住！

第二部分　针对特定技术应用TDD
第一部分讨论了如何面向普通的Java代码进行测试驱动开发，另外也有选择地介绍了一些技术和方法。但在现实当中，只面对普通Java代码是不可能的。换句话说，我们会面对各种其他人所认为的“不可能做到测试驱动”的情况。显然，事实并非如此；第二部分将一一驳斥这些谬论，每次围绕一种技术来探讨。

第5章将学习在Java EE Web应用中实现测试驱动，即不局限于Java Servlets和Spring控制器这样的纯Java代码，还要涵盖用来生成标记的视图模板。第6章深入应用程序的底层，学习测试及以测试驱动方式编写访问数据的代码。不仅涉及使用JDBC存取和操作数据的代码，也包括使用Spring Framework的JdbcTemplate和常用的Hibernate对象关系映射框架的代码。第7章将进入更陌生一些的领域，学习如何测试并行及其他不易预测的代码。这一部分最后全面介绍了测试驱动Java Swing应用程序，也介绍了一些简化相应任务的设计模式。

本部分内容

	第5章　测试驱动Web组件

	第6章　测试驱动数据访问

	第7章　测试驱动不可预测功能

	第8章　测试驱动Swing代码

第5章　测试驱动Web组件

 测试驱动Java EE Web组件可不容易。

 —— 一句传言

在本章中，我们将会讲解用TDD在Java企业版（Java EE）平台下开发Web应用的方法，解决各种让开发人员头疼的问题。迄今为止，我们介绍的那些内容只是些简介性的材料，在一般的TDD培训班中即可学到。这些材料虽然能帮我们理解技术背后的理念，但在Java EE的环境下进行TDD可没那么容易。尽管理论上Java EE非常灵活，不过开发人员的工作可不轻松。读完这章后，我们对Java EE平台下的Web应用开发就不会有问题了。本章结束后，我们将掌握Java EE平台下Web应用开发的基本理论和工具。

Java EE拥有超强的灵活性，不过由于篇幅限制不能在此阐述得面面俱到，我们会尽可能详细讨论Java平台下Web应用中普遍使用的MVC（Model-View-Controller，模型—视图—控制器）设计模式中的V部分和C部分。如果你还不熟悉MVC模式，我希望你能够花时间读一下《J2EE核心模式》之类的关于模式的书。再强调一遍，有很多框架能帮我们实现控制器（Controller）和视图（View）。为了用最少的努力覆盖到最多的内容，我们会在这两方面各挑一个较好的技术进行详细介绍。

我们先会用纯Java Servlets技术实现控制器，体验一下不用框架做开发的感觉，然后再用Spring框架实现同样功能的控制器。通过对比我们就会知道有测试框架的支持后情况会有多大的改观了。

在视图方面，我们将会介绍如何在容器外测试驱动JSP视图。我们还会介绍另一种视图技术，Apache Velocity，看看不用部署到容器中就能测试的视图技术会使测试驱动变得多么简单。

最后，我们会介绍基于控件的框架（component-based frameworks），尝试在这种非请求—应答（request-response）式的框架下进行测试驱动。我们也会简单地介绍Wicket，一个开源的控件式的Web框架。

我刚才说过，本章内容可不少。不过我保证，读完本章后，会有不少人觉得自己更聪明了！

5.1　在60秒内介绍Web应用中的MVC
在测试驱动这些控制器之前，我们先来了解一下MVC模式。

MVC指Model-View-Controller，即模型—视图—控制器。这种软件架构（或设计模式）把面向用户的组件分成几个单独的部分，分别为负责领域逻辑和数据的部分（模型）、负责表示的部分（视图）和应用的控制逻辑部分（控制器）。原则上模型只负责业务逻辑及数据，视图只负责渲染模型以及与用户交互，控制器只负责根据与用户的交互来修改模型及选择需要渲染的视图。

Java EE Web应用中的MVC主要用于分离模型和视图，与原汁原味的MVC并不完全一样（MVC起源于Smalltalk社区和桌面图形用户界面领域）。控制器通常会给视图传入特殊的模型（即专为视图而造的模型），而不是真实的模型。

例如，要显示一份美国制造的汽车列表时，控制器会从模型中读取数据，产生一个列表，然后把这个列表传给视图，而不会直接把真实模型传给视图。如果我们想修改数字格式或者货币格式等数据显示格式，就可以直接在控制器中做相应改动，而不用修改视图。图5-1用框和箭头表述了这个概念。

图5-1　MVC各部分的责任划分得一目了然。当控制器收到一个HTTP请求时，请求的生命周期就开始。接着控制器会把任何关于业务逻辑和数据操作的工作都交给模型，然后从模型中获取必须的数据。第三步，控制器把数据填给应答（response）对象，最后把渲染的工作交给视图处理

这介绍超过60秒了吗？不好意思。我只是想让大家对控制器、模型和视图有共同的理解。现在，我们回到测试先行的编程方法上。因为MVC中的模型部分就是普通的Java代码，我们很清楚如何测试先行地编写这部分代码，所以将把重点放在控制器和视图的介绍上，有必要时才会提及模型。

我们先从控制器开始介绍，然后再谈视图。

5.2　控制器
在MVC架构中，控制器是应用程序和浏览器HTTP数据流间的“泵”。虽然控制器没有（或至少不应该）包含核心的业务逻辑，但是在Web应用的整体功能方面有举足轻重的地位。因此，我们有必要像对待模型代码一样仔细地用自动化单元测试覆盖控制器代码。

测试驱动控制器代码，或者为控制器写自动化测试等工作有时会很困难，这是因为控制器依赖了一些复杂的，或者难以模拟的API。这类API之所以不好模拟，是因为代码中不仅会使用直接依赖，还会使用间接依赖（所谓间接依赖是指通过直接依赖获取的依赖），所以要模拟接口时不可避免地要模拟整个体系。这就是AndyHunt和Dave在《程序员修炼之道》里提到的“最少知识原则”的设计准则。

Java Servlets是Java EE世界中控制层的基础，所以我们会先介绍Servlet，然后再讨论更高级的框架。由于Spring框架应用相当广泛，所以我们就把它当作高级框架的例子来分析吧。

5.2.1　测试驱动Java Servlets

Servlets是Java web应用的基础。虽然现在很少有Web应用会直接构建在Servlet API之上，而是会选择像Spring、WebWork、Struts、Tapestry、Wicket或JavaServer Faces（JSF）等支持绿场部署项目的框架，但还有大量的遗留代码用到了Servlet。

在开始测试驱动Servlet之前，我们先来了解一些基础知识。

	Server API基础

先来看个简单的例子。代码清单5-1中的Servlet类把请求参数以纯文本格式回显，每个参数值占一行。

 代码清单5-1　回显参数的Servlet示例

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.Enumeration;
　
public class EchoServlet extends HttpServlet {
　
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setHeader("Content-Type", "text/plain"); /*（以下2行）应答对象生成响应*/
 PrintWriter writer = response.getWriter();
 Enumeration e = request.getParameterNames(); // 请求对象封装请求参数
 while (e.hasMoreElements()) {
 String parameter = String.valueOf(e.nextElement());
 String[] values = request.getParameterValues(parameter); // 请求对象封装请求参数
 for (int i = 0; i < values.length; i++) {
 writer.write(parameter + "=" + values[i]); /*（以下2行）应答对象生成应答*/
 writer.write("\n");
 }
 }
 writer.close();
 }
}

Servlet通常会有一两个公有方法，如代码清单5-1中doGet方法等。每个公有方法处理一种类型的HTTP请求，例如GET、POST、HEAD、PUT等。每个方法都以doXXX格式命名。尽管开发人员偶尔要用Servlet处理HTTP HEAD或者其他较少见的请求类型，大部分情况下都只处理GET和POST请求而已。Servlet的基类javax.servlet.http.HttpServlet会把HTTP请求映射到对应的doXXX方法上，如图5-2所示。

图5-2　HttpServlet类的service方法负责处理所有HTTP请求。我们的Servlet类会继承自这个HttpServlet类。HttpServlet的Service方法根据HTTP请求的类型把请求转发到相应的doXXX()方法上

代码清单5-1中的EchoServlet类只用doGet方法处理GET请求。若把其他任何的请求重定向到这个EchoServlet上都会出错。这样很合理，因为EchoServlet的作者并没有打算处理其他类型的请求。

我们来看看这些怪异的接口和类到底是什么东西。

方法的第一个参数HttpServletRequest封装了HTTP请求，其包含请求相关参数、HTTP头、及其他信息。请求对象也可以把数据保存在请求属性中，以此把数据从一个请求处理组件传递给另一个组件。例如我们想用Servlet对特定请求进行预处理时，可以把预处理后的中间结果保存到请求的属性中，然后再把请求转发给其他的Servlet继续处理。在代码清单5-1的doGet方法中，我们从请求对象中读出所有请求参数的名称，然后挨个获取参数值。

第二个参数HttpServletResponse主要用于给客户端回送应答。任何发回给浏览器的HTTP头都可以放到应答对象中。所有想输出的内容都可以传给应答中的PrintWriter对象和ServletOutputStream对象。例如在代码清单5-1中，Servlet把收到的参数都回写给了应答对象中的PrintWriter对象。

就这么简单，这些API其实并不复杂。下面来试着写测试吧。总的来说，在测试中我们需要模拟请求和应答。

	模拟请求和应答

如果我们要为刚才的Servlet写个测试来验证应答与期望是否一致，那么我们就要为Servlet提供HttpServletRequest和HttpServletResponse实例。代码清单5-2中为EchoServlet的测试。

 代码清单5-2　EchoServlet的单元测试示例

import org.springframework.mock.web.MockHttpServletRequest;
import org.springframework.mock.web.MockHttpServletResponse;
　
public class TestEchoServlet {
 @Test
 public void testEchoingParametersWithMultipleValues()
 throws Exception {
 MockHttpServletRequest request =
 new MockHttpServletRequest(); /*❶（以下6行）创建并填充模拟对象*/
 MockHttpServletResponse response =
 new MockHttpServletResponse();
 request.addParameter("param1", "param1value1");
 request.addParameter("param2", "param2value1");
 request.addParameter("param2", "param2value2");
　
 new EchoServlet().doGet(request, response); // ❷ 用模拟指行代码
　
 String[] lines = response.getContentAsString().split("\n"); /*❸（以下7行）从应答对象中获取结果*/
 assertEquals(
 "Expected as many lines as we have parameter values",
 3, lines.length);
 assertEquals("param1=param1value1", lines[0]);
 assertEquals("param2=param2value1", lines[1]);
 assertEquals("param2=param2value2", lines[2]);
 }
}

看看代码清单5-2，情况似乎并不太糟，是吧？我想是的，特别是在MockHttpServletRequest和MockHttpServletResponse类的帮助下1。我们创建了两个测试替身❶，然后填充进去一些必要的请求参数、HTTP头及请求的URI等❷，来模拟浏览器发起的请求。以模拟的请求和应答对象当参数调用Servlet后，我们只要❸从应答对象中获取结果信息进行验证就行了，和其他类型的JUnit测试一样。

1 在代码清单5-2中用到的模拟对象的实现是由Spring框架引入的，在网上还有很多免费的模拟对象库。

有了第三方提供的测试替身来模拟请求对象和应答对象，我们就可以测试Servlet了（当然不一定必须由第三方提供，自己写一个也不难）。不过再强调一遍，刚才这个Servlet相当的简单。如果要测试现实中的更复杂的Servlet，情况可就大不一样了。因此，我们最好找个比EchoServlet更贴近真实的例子来练习。

	测试重定向

让我们想想什么样的Servlet的例子既够“真实”，又能很好地体现测试先行开发方法的特点？用于登录的Servlet怎么样？假设这个Servlet首先需要验证登录信息，然后判断用户最后一次修改密码是否在90天以前，若是就重定向到“修改密码”页面，否则直接进入首页。怎么样，听起来不错吧？动手吧！

我们首先该测什么？我想先测登录失败的情形，因为这比较容易。我们可以验证密码错误时LoginServlet会拒绝用户登录并显示错误页面。可以这么实现：

MockHttpServletRequest request = new MockHttpServletRequest();
MockHttpServletResponse response = new MockHttpServletResponse();
HttpServlet servlet = new LoginServlet();
servlet.service(request, response);
assertEquals("/invalidlogin", response.getRedirectedUrl());

我们想模拟一个请求，然后验证请求会被重定向到了出错信息页面。HttpServletResponse的伪实现能帮我们实现这个测试。

我们还要能模拟用户的登录信息。把登录信息放到j_username和j_password两个请求参数里如何？此外，我们还要用请求对象和应答对象的伪实现，用于传入登录参数以及验证重定向后的结果。

我们可以使用EasyMock等模拟对象框架，也可以弄套伪实现库来做实现。Spring框架里提供了许多类，这些类实现了javax接口，例如HttpServletRequest、HttpServletResponse等。这些类很方便使用，虽然我们并不会在产品代码里使用Spring框架，但可以先在测试中使用这些类。

代码清单5-3中为LoginServlet的第一个测试。

 代码清单5-3　LoginServlet的第一个测试

import javax.servlet.http.HttpServlet;
import org.junit.Test;
import static org.junit.Assert.assertEquals;
import org.springframework.mock.web.MockHttpServletRequest;
import org.springframework.mock.web.MockHttpServletResponse;
public class TestLoginServlet {
　
 @Test
 public void wrongPasswordShouldRedirectToErrorPage()
 throws Exception {
 HttpServlet servlet = new LoginServlet();
 MockHttpServletRequest request = /*（以下4行）创建伪请求对象……*/
 new MockHttpServletRequest("GET", "/login");
 request.addParameter("j_username", "nosuchuser");
 request.addParameter("j_password", "wrongpassword");
 MockHttpServletResponse response =
 new MockHttpServletResponse(); // ……伪应答对象
 servlet.service(request, response);
 assertEquals("/invalidlogin", response.getRedirectedUrl()); // 验证
 }
}

就这么简单。我们在登录请求中添加了两个参数：username和password，然后调用了即将创建的LoginServlet类，最后读取伪应答对象，验证是否重定向到了/invalidlogin页面。目前我们并不会关心/invalidlogin页面是什么样，只需要确认登录失败后请求会重定向到这个页面即可。

现在可以创建LoginServlet类了。首先根据编译器的提示，我们应该先创建一个LoginServlet类，创建完后运行测试——不出所料，测试失败了。然后我们来实现service方法。让测试通过的最简单的办法遇到无论遇到什么请求参数都直接返回/invalidlogin，见代码清单5-4。

 代码清单5-4　LoginServlet拒绝所有登录请求

public class LoginServlet extends HttpServlet {
 @Override
 protected void service(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.sendRedirect("/invalidlogin"); // 拒绝所有登录请求
 }
}

运行一遍测试，都通过了，不过显然还有许多功能没实现。现在开始写测试验证正确登录的情形吧。

	使用参数和会话

我们怎么知道登录成功了？至少要把用户重定向到首页吧。另外我们也需要用某种方法记住用户的登录信息。最终我们可能要用一个复杂的身份验证框架，不过现在把用户信息存到会话（session）里就足够了。

继续些测试，如代码清单5-5所示。

 代码清单5-5　我们的下一个测试，用来验证登录成功的情形

@Test
public void validLoginForwardsToFrontPageAndStoresUsername()
 throws Exception {
 HttpServlet servlet = new LoginServlet();
 MockHttpServletRequest request =
 new MockHttpServletRequest("GET", "/login");
 request.addParameter("j_username", "validuser");
 request.addParameter("j_password", "correctpassword");
 MockHttpServletResponse response =
 new MockHttpServletResponse();
 servlet.service(request, response);
 assertEquals("/frontpage", response.getRedirectedUrl());
 assertEquals("validuser",
 request.getSession().getAttribute("username"));
}

这个测试和我们第一个测试很相似。要通过这个测试我们必须要实现登录逻辑，不能再一味地拒绝用户登录了。我们还要检查会话中的username变量，验证用户的登录信息是正确的。我们遇到问题时通常不会花太多时间考虑，而是会很快地做出决定，将来遇到问题了再做修改。现在只要会话中包含用户名，就表明此用户已经成功登录了。

在IDE中切换回LoginServlet的实现代码后，我突然意识到还有一个设计问题没解决。我们的LoginServlet如何知道“合法用户”真的合法？如何知道“正确的密码”真的正确？换句话说，LoginServlet如何验证用户？来，带上设计者的帽子，想想这个问题。

	演化出更棒的设计

要使这个新添加的登录测试通过，我们必须能正确地区分有效登录和无效登录。我们能用多种方式实现登录功能，可以用文件系统或是数据库，也可以用LDAP服务器，不过我现在还不想深入登录的实现细节。我们现在要进行模块化设计，具体实现方法并不是重点。我们最好把登录验证功能交给其他类处理，让Servlet只负责控制器的工作即可。

由此可以写出代码清单5-6中的验证服务代码。

 代码清单5-6　AuthenticationService 接口

public interface AuthenticationService {
 boolean isValidLogin(String username, String password);
}

因为现在并没有使用真的用户数据库，也没有用其他的验证服务，所以我打算先给出AuthenticationService接口的伪实现，如代码清单5-7所示。

 代码清单5-7　AuthenticationService接口的伪实现

public class FakeAuthenticationService implements
 AuthenticationService {
　
 private Map<String, String> users = new HashMap<String, String>();
　
 public void addUser(String user, String pass) {
 users.put(user, pass);
 }
　
 public boolean isValidLogin(String user, String pass) {
 return users.containsKey(user)
 && pass.equals(users.get(user));
 }
}

在这个伪实现中我们用一个简单的Map对象保存用户名和密码，同时提供了个给Map中添加有效用户的方法，以控制“用户数据库”。

LoginServlet该如何得到一个AuthenticationService的引用？因为实例化Servlet类是由Servlet容器负责的，所以我们没法通过构造函数注入依赖。我们可以把AuthenticationService变为一个抽象类，再添加一个静态getter方法用来获取当前实现，相应的有一个静态setter方法来用来设置当前实现。这主意其实并不怎么样，使用依赖注入当然会更清楚。

为了避免在这种架构问题上耽搁太多时间，我们可以暂时推迟这个决定，先给LoginServlet类添加一个protected getter方法，用于获取AuthenticationService的实现。我们可以在子类中覆盖这个方法，返回模拟的AuthenticationService。

代码清单5-8中的代码由代码清单5-5中的代码修改而成，并使用了AuthenticationService。

 代码清单5-8　重写登录测试，使用AuthenticationService

@Test
public void validLoginForwardsToFrontPageAndStoresUsername()
 throws Exception {
 final String validUsername = "validuser";
 final String validPassword = "validpassword";
　
 final FakeAuthenticationService authenticator = /*（以下3行）确认伪验证服务*/
 new FakeAuthenticationService();
 authenticator.addUser(validUsername, validPassword);
　
 LoginServlet servlet = new LoginServlet() {
 @Override /*（以下4行）用伪对象*/
 protected AuthenticationService getAuthenticationService() {
 return authenticator;
 }
 };
　
 MockHttpServletRequest request = new MockHttpServletRequest();
 request.addParameter("j_username", validUsername);
 request.addParameter("j_password", validPassword);
 MockHttpServletResponse response =
 new MockHttpServletResponse();
　
 servlet.service(request, response);
 assertEquals("/frontpage", response.getRedirectedUrl());
 assertEquals("validuser",
 request.getSession().getAttribute("username"));
}

这测试可真大，测试通过后我们肯定要做些重构了。现在代码还不能通过编译，不过在LoginServlet类上添加getter方法即可。

public class LoginServlet extends HttpServlet {
　
 protected AuthenticationService getAuthenticationService() {
 return null;
 }
　
 @Override
 protected void service(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.sendRedirect("/invalidlogin");
 }
}

编译通过了，测试失败了，因为重定向的地址不对。现在动手实现功能吧。

虽然引入AuthenticationService接口算是个大的设计变动，不过修改当前实现以通过测试一点也不难，如代码清单5-9所示。

 代码清单5-9　LoginServlet把验证的任务交由其他的服务处理

public class LoginServlet extends HttpServlet {
　
 protected AuthenticationService getAuthenticationService() {
 return null; // 还没必要实现此方法
 }
　
 @Override
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 String user = request.getParameter("j_username");
 String pass = request.getParameter("j_password");
 if (getAuthenticationService().isValidLogin(user, pass)) { // 基于验证服务规则的分支执行
 response.sendRedirect("/frontpage");
 request.getSession().setAttribute("username", user);
 } else {
 response.sendRedirect("/invalidlogin");
 }
 }
}

现在这个测试通过了，上个测试却失败了。这是因为在第一个测试中并没有给LoginServlet配置AuthenticationService。我们可以把第二个测试的初始化LoginServlet部分提取出来，作为两个测试共用的初始化方法，这样就可以修复第一个测试了。

我们可以把LoginServlet匿名子类的实例保存在测试类的成员变量中，也可以对FakeAuthenticationService实例做同样的处理。在两个测试中，我们也会用到伪请求和应答对象，所以也把它们移入测试类的成员变量中。另外，还可以把重复的字符串提取成常量。这下测试代码清楚多了。见代码清单5-10。

 代码清单5-10　为LoginServlet配置AuthenticationService

public class TestLoginServlet {
　
 private static final String CORRECT_PASSWORD = "correctpassword";
 private static final String VALID_USERNAME = "validuser";
　
 private LoginServlet servlet; /*（以下4行）将普通对象移到域中*/
 private FakeAuthenticationService authenticator;
 private MockHttpServletRequest request;
 private MockHttpServletResponse response;
　
 @Before
 public void setUp() {
 authenticator = new FakeAuthenticationService();
 authenticator.addUser(VALID_USERNAME, CORRECT_PASSWORD);
　
 servlet = new LoginServlet() {
 @Override
 protected AuthenticationService
 getAuthenticationService() {
 return authenticator;
 }
 }; /*（以下20行）我们的测试方法非常简洁，并且很到位*/
　
 request = new MockHttpServletRequest();
 response = new MockHttpServletResponse();
 }
　
 @Test
 public void wrongPasswordShouldRedirectToErrorPage()
 throws Exception {
 request.addParameter("j_username", VALID_USERNAME);
 request.addParameter("j_password", "wrongpassword");
 servlet.service(request, response);
 assertEquals("/invalidlogin", response.getRedirectedUrl());
 }
　
 @Test
 public void validLoginForwardsToFrontPageAndStoresUsername()
 throws Exception {
 request.addParameter("j_username", VALID_USERNAME);
 request.addParameter("j_password", CORRECT_PASSWORD);
 servlet.service(request, response);
 assertEquals("/frontpage", response.getRedirectedUrl());
 assertEquals(VALID_USERNAME, request.getSession()
 .getAttribute("username"));
 }
}

提取出公用初始化方法后，测试都通过了。不过j_username和j_password这两个字符串还存在重复，也可以重构成常量。虽然有时候可读性比“不能有重复”更重要，不过就这具体情况，我强烈建议做重构。这重复不但存在于测试方法之间，还存在于测试代码与产品代码之间，为此我们需要定义公共的常量，让产品代码和测试代码都使用此常量，这样就可以消除重复了。这个任务交给你来做。

关于这个话题，再写10页都没问题。不过为了留些时间讲解其他技术，我们就到此为止吧。现在来介绍另一种与纯Servlet API不太一样的技术。

	回顾Servlet技术上的测试驱动

现在来看看我们对AuthenticationService接口做了哪些工作。我们引入了AuthenticationService接口，这样LoginServlet就不用知道过多验证细节了。至于如何给Servlet注入AuthenticationService暂时不做考虑，先使用getter方法，做测试时可以覆盖这个方法。目前我们还没实现真正的AuthenticationService，只有一个伪实现。

采用分治法，我们可以保持Java Servlet的代码既干净，可测试性又好。使用意图编程，小步地通过测试，我们正在一步步地实现完整的功能。在LoginServlet例子中我们也看到了，用测试驱动的方法编写Servlet代码并不比写普通代码难多少。

现在我们已经知道如何测试驱动Servlet了，下面来看看若使用现代的MVC框架做开发情况会有多么不同吧。目前Spring框架应用非常广泛，我们就用它吧。

5.2.2　测试驱动Spring控制器

Spring框架带有很多用于实现控制器的类。这些类与Servlet相似，不过抽象层次更高。这些Spring控制器不会把请求直接分发到视图上，而是会返回一个ModelAndView对象，通知框架下一步该做什么。为了更清晰地阐述，我们来看一些代码。

代码清单5-11中的SampleController实现了Spring MVC中的Controller接口。在SampleController中需要实现一个简单的方法，这个方法负责处理请求，返回ModelAnd- View对象，Spring会根据此对象中的数据决定下一步的操作。SampleController所对应的URL可以在配置文件中配置。传入的请求对象中包含了所有SampleController需要的数据，而返回的ModelAndView中包含所有Spring执行下步操作时所需的信息。

 代码清单5-11　Spring控制器的例子

public class SampleController implements Controller {

 protected ModelAndView handleRequest(HttpServletRequest request,
 HttpServletResponse response)
 throws Exception {
 return new ModelAndView("viewname");
 }
}

这就是Spring MVC的简单介绍。现在，我们来试着用测试驱动的方法编写Spring MVC控制器。

	编写第一个测试

接下来要用Spring MVC中的Controller类来实现与LoginServlet一样的功能。那么，测试该怎么写呢?当用不正确的密码登录时，控制器还是应当把用户重定向到“错误密码”页面。对应的测试如代码清单5-12所示。

 代码清单5-12　LoginContorller的单元测试例子

public class TestLoginController {
 @Test
 public void wrongPasswordShouldRedirectToErrorPage()
 throws Exception {
 MockHttpServletRequest request =
 new MockHttpServletRequest(); /*❶（以下5行）构成伪对象*/
 request.addParameter("j_username", "nosuchusername");
 request.addParameter("j_password", "nosuchpassword");
 MockHttpServletResponse response =
 new MockHttpServletResponse();
　
 Controller c = new LoginController(); /*❷（以下2行）调用控制器的处理Request()方法*/
 ModelAndView v = c.handleRequest(request, response);
　
 assertEquals("wrongpassword", v.getViewName()); // ❸用户登录Wrongpassword页面
 }
}

从这段代码可以看出，Spring MVC版“登录失败”测试和Servlet版区别不大。我们先创建出请求和应答的测试替身❶，然后将其传给控制器的请求处理方法❷，最后验证执行结果❸。

Spring控制器与Servlet执行结果所不同之处在于Spring控制器会返回ModelAndView对象，这个对象在控制器和视图之间添加了一层抽象。控制器只需要返回一个ModelAndView对象，这对象中含有所有渲染视图所需的数据、需要渲染的视图的名称等。Spring MVC框架会负责剩下的工作，包括用ModelAndView对象中包含的数据渲染视图，等等。

现在我们已经有了测试，创建好LoginController类后就可以运行测试，得到那熟悉的红条了。

	以最简单的方式通过测试

只要添加一行指定视图名称的代码就能通过代码清单5-12中的测试了，代码见代码清单5-13。

 代码清单5-13　失败的登录

import javax.servlet.http.*;
import org.springframework.web.servlet.ModelAndView;
import org.springframework.web.servlet.mvc.Controller;
　
public class LoginController implements Controller {
　
 public ModelAndView handleRequest(HttpServletRequest request,
 HttpServletResponse response)
 throws Exception {
 return new ModelAndView("wrongpassword");
 }
}

这很简单。运行一遍测试，通过了。下一步该做什么？

	引入依赖

Spring框架的依赖管理功能很强大，因此Spring控制器的可测试性比普通Servlet也更好些。我们来为登录成功的情形编写一个测试以展示这个特性。

假设控制器同样把登录验证工作交给AuthenticationService。为了更容易测试，我们必须想办法把AuthenticationService的实现传给控制器。有了Spring框架的依赖注入功能，我们只需要给LoginController添加一个setter，setAuthenticationService，然后在配置文件中把AuthenticationService的实现与LoginController关联起来，这样在部署的时候LoginController所需的依赖就会自动注入了。见代码清单5-3。

在测试中我们给LoginContorller传入一个AuthenticationService的测试替身。在生产环境中Spring会根据配置文件给LoginContrller注入真实的AuthenticationService。

图5-3　把LoginController及其依赖映射到AuthenticationService实现上

代码清单5-14中有效登录的测试与LoginServlet的测试很相似。

 代码清单5-14　测试有效登录

private static final String CORRECT_PASSWORD = "correctpassword";
private static final String VALID_USERNAME = "validuser";
...
　
@Test
public void validLoginForwardsToFrontPage() throws Exception {
 MockHttpServletRequest request = new MockHttpServletRequest();
 request.setMethod("GET");
 request.addParameter("j_username", VALID_USERNAME);
 request.addParameter("j_password", CORRECT_PASSWORD);
 MockHttpServletResponse response =
 new MockHttpServletResponse();
　
 FakeAuthenticationService mock =
 new FakeAuthenticationService();
 mock.addUser(VALID_USERNAME, CORRECT_PASSWORD);
　
 LoginController c = new LoginController();
 c.setAuthenticationService(mock); // 模仿依赖注入
 ModelAndView v = c.handleRequest(request, response);
　
 assertEquals("frontpage", v.getViewName());
}

LoginServlet测试和LoginController测试中调用的方法不同（分别为Servlet的service方法和Spring控制器的handleRequest方法），另外有了Spring MVC，我们就不用再担心如何构建依赖注入架构了，Spring已经替我们准备好了。只需要加个setter，然后修改配置文件即可。

我们先来看看如何使测试尽快通过，然后结束这部分内容。代码清单5-15是控制器的完整实现。

 代码清单5-15　包含依赖注入的LoginController的完整实现

public class LoginController implements Controller {
　
 private AuthenticationService authenticator;
　
 public void
 setAuthenticationService(AuthenticationService authService) {
 this.authenticator = authService;
 }
　
 public ModelAndView handleRequest(HttpServletRequest request,
 HttpServletResponse response) throws Exception {
 String user = request.getParameter("j_username");
 String pass = request.getParameter("j_password");
 if (authenticator.isValidLogin(user, pass)) {
 return new ModelAndView("frontpage");
 }
 return new ModelAndView("wrongpassword");
 }
}

没什么新东西。运行所有测试，当前有效登录的测试通过了，第一个测试却失败了。这是因为我们没有给第一个测试中的控制器注入AuthenticationService。我们可以把公共的初始化代码提取成一个成员方法，再给这个方法标记上@Before。这一步重构的结果就不在这里演示了，你可以自己试试，重构后代码会很简洁。

看完这些例子后，我想不会再有人认为现代MVC框架下测试驱动控制器类有任何麻烦或者困难了。这些实际上都只是普通的Java代码，只不过接口稍微大了一点而已。

现在我们知道测试驱动MVC控制器完全可能，丝毫不用委屈求全地退回“非测试驱动”的方式。下一步我们来讨论视图部分的处理方法。

5.3　用测试先行的方法构建视图
不得不说，缺乏信心是实现自动测试视图的最大障碍。有些人不相信这工作也能自动化，甚至认为这样做不合情理。Web应用程序中某些部分确实要靠眼睛来验证，例如整体美感或者页面样式在所有浏览器上都显示正常等。这部分测试没必要自动化，因为成本高却回报少，而且还有些脆弱。（如果计算机告诉你网页看起来一切正常，你相信吗？）在图5-4中我们划分了需要用视觉验证的部分与自动化测试能够覆盖的部分。

图5-4　虽然自动化测试很难验证视图的外观部分，但却可以验证逻辑部分。所谓视图逻辑就是说测试视图做了些什么。此外即使不能自动化测试到饼状图的整个左半边，自动化其中一部分也是可以的。例如，我们可以测试网页是否符合“508条款”1中对网络内容“可接近性”的要求（“508条款”中不需要人为判断的那部分，如每个IMAGE标签都需要在alt属性中有一段文字描述等）

1 “508条款”是对1973年颁布的美国劳工复健法的改进，它是一部联邦法律，规定了所有由联邦政府发展、取得、维持或使用的电子和信息技术都必须能让残疾人“可以访问”。如果某技术能够由残疾人像没有残疾的人一样有效的使用，那么这项技术就被认为是“可以访问”的。——编者注

然而视图层的某些部分还是可以自动化测试的，我们称这部分为视图逻辑。所谓的视图逻辑是类似于“给定一个物品列表，只有第一个物品的详细信息会显示出来，其他物品仅显示名称”的逻辑。

从技术角度来测试驱动视图层确实有些麻烦，如果想使TDD周期尽量短就需要想办法克服这些技术问题。用JSP编写的视图就是一个例子，因为需要JSP引擎才能将JSP渲染成HTML（或转换成其他任何你期望形式的内容），这给测试工作带来不少麻烦。

别担心，这个问题可以解决。在单元测试中嵌入一个轻量级的JSP引擎就能渲染JSP页面了。因为这引擎很“轻量级”，所以初始化过程不会占用太多时间，比起一个必须部署到功能完整的应用服务器上才能运行的测试，这种单元测试运行速度要快得多。

我们先来看看如何测试先行地用JSP技术开发经典的登录页面。讲完这部分内容后，我们将会用Velocity——另一种视图技术——进行开发，体验一下TDD的整个过程会有多大区别。最后我们将会进入基于控件的Web框架世界，体验在这种技术下测试驱动视图的感觉。

5.3.1　用JspTest测试驱动JSP

刚才提到过，测试驱动JavaServer Pages需要JSP引擎等基础设施的支持。我们会使用一个叫做JspTest的开源库。JspTest提供了必备功能的一个最小集合，它会先把JSP编译成Servlet类然后再执行此Servlet。JspTest内部使用了Jasper做实现。有很多Web容器，例如Apache Tomcat、Jetty、Glassfish等都使用了这个引擎。虽然Jasper不是最成熟的，不过已经够用了。

现在着手干吧！

	构建必要的基础设施

接下来我们会一步步构建出必要的基础设施，这样就能对各个细节了如指掌了。

JspTest里有一个叫做HtmlTestCase的抽象类，所有测试都需要继承这个类。HtmlTestCase提供了一些方法来模拟HTTP请求和渲染JSP文件以及做HTTP相关的验证等。

JspTest默认在当前目录下开始寻找JSP文件。如果我们没有把jsp文件放在当前目录而是web/jsp目录中，那么在每个测试中我们明确指定websrc/jsp路径，这显然很麻烦。要解决这个问题，我们可以添加一个虚基类，在虚基类中覆盖getWebRoot方法，然后让所有测试都继承这个虚基类：

import net.sf.jsptest.HtmlTestCase;
　
public abstract class MyJspTestCase extends HtmlTestCase {
 @Override
 protected String getWebRoot() {
 return "./websrc/jsp";
 }
}

现在我们只要指定/foo.jsp就能渲染websrc/jsp/foo.jsp了。这样做的好处目前看来并不起眼，不过随着代码量的增加，优势会逐渐体现出来的——特别是改变JSP源文件的目录时。

完工了（当然还要把JspTest等依赖放到类路径（class path）中），现在开始写测试吧。

	测试渲染出的内容

下一步就要用TDD开发JSP登录页面了。在第一个测试中我们可以验证用户打开页面时能看见一些必要的表单元素。再次使用意图编程，写出代码清单5-16中的测试。

 代码清单5-16　使用JspTest虚基类

public class TestLoginPage extends MyJspTestCase {
　
 public void testFormFieldsArePresent() throws Exception {
 get("/login.jsp");
 form().shouldHaveField("j_username");
 form().shouldHaveField("j_password");
 form().shouldHaveSubmitButton("login");
 }
}

简言之，这测试用HTTP GET请求获取login.jsp，然后验证页面中包含j_username和j_password两个输入项和名叫login的提交按钮。来运行测试吧。

测试失败了，因为JspTest在Web根目录中没找到login.jsp文件，不过这正是期望的结果，因为我们在以测试驱动的方式进行开发。现在我们来写点JSP代码让测试通过吧。

 为什么不用JUnit 4注释语法

 我们够幸运，能使用最新最好的技术，不过有许多技术人员仍然在使用Java 1.4甚至更早版本。JspTest需要支持各种用户，因此没有用注释语法。因为JUnit 4向后兼容，因此这些测试可以与基于注释的测试一起运行。

	创建正巧足够的JSP

我们先来写个最简单的JSP页面以验证新JSP文件加对了地方，如代码清单5-17所示。

 代码清单5-17　login.jsp

　

空白页。不可能比这还简单了。有了这个测试做保证，我们埋头写了一大堆代码后不会心碎地发现改错了文件。我们稍后会逐渐加快开发速度，不过慢速起步总是更安全些。

再运行一遍测试，JspTest可以在文件系统中找到我们的JSP文件了。不过测试还是失败了，这是因为页面中没有“j_username”输入框。这很正常，因为我们只有一个空白JSP页面而已。接着我们要添加“j_username”输入框和一个基本的HTML框架。按照测试结果的指示，我们还要加一个“j_password”，然后添加提交按钮，最后整个测试都通过了。如代码清单5-18所示。

 代码清单5-18　使第一个测试通过的JSP代码

<%@ page language="Java" %>
<html>
 <body>
 <form>
 <input type="text" name="j_username" />
 <input type="password" name="j_password" />
 <input type="submit" name="login" />
 </form>
 </body>
</html>

测试已经可以正常执行了，而且我们还测试驱动出了用户界面的一项具体功能。我们已经添加了不少用于测试的基本功能，随着新需求不断出现，我们会相应添加更多的功能。现在继续写测试吧，每个测试都能使咱们的JSP页面更加完善。

	把行为驱动到页面中

继续开发登录页面。我们急切地想试试用测试驱动的方法给页面添加动态行为，所以来写个测试吧，验证登录失败后登录页面会自动在j_username框内填入用户名。代码清单5-19中为我们的测试。

 代码清单5-19　测试在登录失败后用户名会保留，而密码不会保留

public void testPreviousUsernameIsRetained() throws Exception {
 setRequestAttribute("j_username", "bob");
 get("/login.jsp");
 form().field("j_username").shouldHaveValue("bob");
}

这个测试告诉我们，在渲染页面时应该用请求参数j_username填充输入框。运行测试，失败了，因为就没填充输入项。代码清单5-20中的代码能够通过测试。

 代码清单5-20　增加脚本

<%@ page language="Java" %>
<html>
 <body>
 <form>
 <%
 String username =
 (String) request.getAttribute("j_username");
 if (username == null) username = "";
 %>
 <input type="text" name="j_username" value="<%= username %>"/>
 <input type="password" name="j_password" />
 <input type="submit" name="login" />
 </form>
 </body>
</html>

是不是很简单？谁说不能测试驱动JSP页面？现在已经没有什么好争论的了吧？测试驱动JSP既现实又可行。

	JspTest之外的选择

JspTest完全能胜任大部分JSP页面的测试工作。不过这个测试工具还很年轻，并不很完善，例如在HTML相关的验证和其他内容验证方面还有待提高。此外，并不是所有的内建对象（例如request、response、session、pageContext等）都能自由定制，所以有时需要另辟蹊径解决问题。

在写这本书时，还有一个名为ServletRunner的优秀JSP单元测试工具（HttpUnit项目的一部分）。ServletRunner是一个轻量级的Web容器，用于测试Servlet和JSP。关于这个工具的详细信息，可以参考J. B. Rainsberger的优秀作品《程序员实用测试技巧》一书中的技巧12.3。图5-5为这种方法的整体架构，用转发Servlet来访问和测试JSP输出。

另外我们还可以把Java EE web容器嵌入测试中。Jetty这种轻量级且兼容标准的Web容器就很适合做这项工作。不过Jetty需要一个有效的Web应用环境，这点比JspTest更复杂（因为JspTest把这类细节都隐藏了起来，所以更简单些）。

图5-5　要测试驱动JSP，可以将其部署到轻量级、内嵌的Servlet容器中，然后用HTTP请求或者容器内部的API来访问页面进行测试

把JSP代码部署到一个单独的容器中进行测试也可以，不过会比内嵌的容器慢不少。如果你倾向于这种集成测试，那么可以尝试Jakarta Cactus，它是该领域的一种重要的测试工具。不过，别怪我没提醒你，这类工具可不像JspTest和他的朋友们一样，能快速的提供反馈，这类测试运行速度都相对较慢。

JavaServer Pages的介绍目前已经足够了。接下来我们来一起看看开源Java视图技术的那一方天空有多么蔚蓝。

5.3.2　测试驱动Velocity模板

Velocity是一个通用的模板引擎，其本身与Java EE平台毫无关系。虽然从Java EE开发人员角度来看这也许不是好事，不过比起功能过于强大的JSP，它有自己独特的优势。

我们刚才提到Velocity是种轻量级的视图技术。为什么是轻量级的？可以看到，用JspTest框架做测试时要写很多代码，因为需要很多基础设施来渲染JSP页面。虽然已经有人写了工具帮我们简化工作，但无论如何，渲染视图这工作应该很简单才是。

Velocity专门为嵌入其他工具或应用程序而设计，完全不依赖于Java EE平台，因此我们可以考虑用其简化视图开发。虽然测试驱动视图仍然需要一些基础设施支持，不过已经比JSP强很多了。因为我们不需要为模板引擎准备容器，模板引擎本身也比Apache Tomcat的Jasper小得多。

在深入讨论前，我们先了解一些Velocity模板的基础知识和Velocity API。

	Velocity基础

Velocity的概念很简单：给定一个模板及模板中使用的变量，把这两样东西塞给Velocity，Velocity会计算模板中的纯文本、变量、基本的条件分支结构、循环结构等，然后给出渲染结果。见图5-6。

Velocity的API并不复杂。先创建出VelocityContext对象，填入些变量，然后创建VelocityEngine，让引擎解析模板，最后把渲染结果写到指定的输出流上（即java.io.Writer）。换言之，要用Velocity渲染模板，只需要写如下的代码：

String template = "Hello $user";
StringWriter writer = new StringWriter();
VelocityContext context = new VelocityContext();
context.put("user", "Reader");
VelocityEngine engine = new VelocityEngine();
engine.init();
engine.evaluate(context, writer, "test", template);

图5-6　Velocity的基本理念十分简单。Velocity会解析带有特殊标记的变量数据和基本程序结构（programming constructs），读取变量值，然后渲染出结果

执行以上代码后StringWriter中就会包含渲染结果。结果应该是Hello Reader，因为在VelocityContext中，我们把变量值Reader付给了变量user。

接下来我们看看用Velocity模板编写的登录页面需要什么样的支持设施以写出紧凑且含义明确的测试。

	构建基础设施

我们刚才已经看到了，要渲染Velocity模板，需要准备好VelocityContext（等同于JSP和Servlet中用到的请求属性（request attributes））、用于输出的Writer，并指定所用模板的名称和模板文本。假设从文件系统中读取Velocity模板，测试可以如代码清单5-21中所示。

 代码清单5-21　开始编写VelocityTestCase

public class TestLoginTemplate extends VelocityTestCase {
　
 @Override
 protected String getWebRoot() { /*（以下3行）覆盖Web root让测试中的模板路径变短*/
 return "./websrc/velocity";
 }
　
 @Test
 public void previousUsernameIsRetained() throws Exception {
 String previousUsername = "Bob";
 setAttribute("username", previousUsername);
 render("/login.vtl"); // 在这里渲染/websrc/velocity/login.vtl
 assertFormFieldValue("j_username", previousUsername);
 }
}

我们的新测试类继承自一个虚基类，这个虚基类提供了必要的基础设施和渲染方法（例如setAttribute，render等）以及一些验证渲染结果的方法。我们先来试着渲染模板，然后解析渲染出的HTML，然后再提供些验证方法检验渲染结果的正确性。

代码清单5-22中的代码用于加载及渲染模板，渲染所需的各个属性则需要具体测试方法提供。

 代码清单5-22　虚基类提供了渲染Velocity模板的设施

import java.io.*;
import javax.xml.parsers.*;
import javax.xml.xpath.*;
import org.apache.velocity.*;
import org.apache.velocity.app.*;
import org.w3c.dom.*;
import org.junit.*;
　
public abstract class VelocityTestCase {
　
 private VelocityContext context;
 protected Document document;
　
 @Before
 public void setUp() throws Exception {
 context = new VelocityContext(); // ❶为每个测试创建新的上下文
 }
 protected String getWebRoot() {
 return ".";
 }
　
 protected void setAttribute(String name, Object value) { /*❷（以下3行）测试应将属性植入VelocityContext*/
 context.put(name, value);
 }
　
 protected void render(String templatePath) throws Exception {
 File templateFile = new File(getWebRoot(), templatePath);
 String template = readFileContent(templateFile);
 String renderedHtml = renderTemplate(template); // ❸在内存中渲染模板
 this.document = parseAsXml(renderedHtml);
 }
　
 private String renderTemplate(String template) throws Exception {
 VelocityEngine engine = new VelocityEngine();
 engine.init();
 StringWriter writer = new StringWriter(); /*❸（以下3行）在内存中渲染模板*/
 engine.evaluate(context, writer, "test", template);
 return writer.toString(); // ❹解析渲染出的HTML，写入DOM树
 }
　
 private Document parseAsXml(String html) throws Exception {
 // omitted for brevity...
 }
　
 private String readFileContent(File file) throws Exception {
 // omitted for brevity...
 }
}

在代码清单5-22的代码中，每个测试都会❶创建出新的VelocityContext，因此测试之间完全独立，之前运行的测试❷所填充的变量值对当前测试毫无影响。在render方法中，我们创建了新的VelocityEngine，然后❸调用evaluate方法渲染模板，渲染结果写入StringWriter。在模板渲染完成时，我们把渲染出的HTML写入DOM树（DOM tree）以进行验证。

现在只剩下几个断言方法要写了。加上这几个方法，我们就可以运行测试来检测代码的正确性了。

	添加断言

现在我们已经有了文档对象（document object），即模板渲染后产生的DOM树。下一步需要实现断言assertFormFieldValue。既然我们已经有了DOM树，而且Java 5的标准库中终于加入了XPath，何不用XPath来验证渲染出HTML的正确性？

代码清单5-23中用标准DOM和XPath API实现了断言方法。

 代码清单5-23　用HTTPUnit解析渲染出的HTML文件

import static org.junit.Assert.*;
import javax.xml.parsers.*;
import javax.xml.xpath.*;
import org.w3c.dom.*;
...
　
public abstract class VelocityTestCase {
 ...
 protected void assertFormFieldValue(String name,
 String expectedValue) throws Exception {
 String xpath = xpathForField(name);
 assertNodeExists(xpath);
 String actual = getString(xpath + "/@value");
 assertEquals(expectedValue, actual);
 }
　
 private String xpathForField(String name) {
 return "//form//input[@name='" + name + "']";
 }
　
 private void assertNodeExists(String xpath) throws Exception {
 assertNotNull("Node doesn't exist: " + xpath,
 getNode(xpath));
 }
　
 private Node getNode(String xpath) throws Exception {
 return (Node) evaluate(xpath, XPathConstants.NODE);
 }
　
 private String getString(String xpath) throws Exception {
 return (String) evaluate(xpath, XPathConstants.STRING);
 }
　
 private Object evaluate(String xpath, QName type)
 throws Exception {
 XPath engine = XPathFactory.newInstance().newXPath();
 return engine.evaluate(xpath, getResponse(), type);
 }
}

终于完成了！红条，因为我们想渲染的login.vtl模板不存在。我们终于又回到了那让人心情舒畅的测试—编码—重构周期上了。把代码清单5-24中的Velocity模板保存到login.vtl中，测试就可以通过了。

 代码清单5-24　登录页面的Velocity模板

<html>
 <body>
 <form>
 <input type="text" name="j_username" />
 <input type="password" name="j_password" />
 <input type="submit" name="login" />
 </form>
 </body>
</html>

现在我们都理解测试驱动Velocity模板的方法了吧？基本上我们需要做两件事：其一，渲染模板；其二，验证渲染结果。Velocity这技术非常简单易用，只需要几分钟即可完成渲染的准备工作。此外，验证HTML文档的方法与其他视图技术一样，所以我们可以重用已有的库。把渲染结果保存到本地文件中，然后用HttpUnit进行测试也是个不错的注意。

不过现在，我们先结束模板方面的话题，转向Web控件等更有趣的技术的讨论吧。在前面的章节中，我们已经见识到了测试驱动“请求—应答”式的MVC框架中的控制器部分和视图部分有多么简单。在本章的技术部分，我们将介绍如何测试驱动基于控件的Web框架。

5.4　在基于控件的Web框架基础上TDD
可以说，测试驱动Servlet和Spring的控制器之所以相对简单，是因为有许多工具支持。在标准Java EE API中或Spring这样的开源框架中，能找到一些包含测试替身的库，提供了很多重要的接口和对象的伪实现。成熟的框架能带给我们很多便利，这是新技术所不具备的。基于控件的框架阵营中（例如Apache Tapestry、Wicket或者Java EE标准的代表——JavaServer Faces）情况又如何呢？

Servlet API或Spring MVC中使用的请求—应答设计，目前在Java EE web开发中占有主导地位，不过这不是开发Web应用的唯一方式。基于控件的框架正在不断增多。这些框架能更好的支持代码重用，也提供了更高层次的抽象。这些特性能使我们开发人员更关注于“要做什么”，而非处理请求参数、把字符串解析成日期对象等技术细节。

在Web之旅结束前，我们来花些时间讨论“基于控件的框架”的相关概念及含义。然后，我们会介绍如何用开源社区提供的最新最棒的工具来测试驱动控件的开发。

5.4.1　剖析典型框架

这些基于控件的框架在架构方面都有一定的模式。从这些模式上我们基本上可以判断出框架是否易于做单元测试，或者适合做TDD。

	控件提供了行为

首先，“基于控件”中的“控件”是指UI控件。这些widgets都是普通的Java类，通常会继承框架中的某个类，或者实现特定的接口。框架本身会根据控件的生命周期，处理控件实例与浏览器发来的请求之间的交互。这种方式让测试驱动控件工作变得很简单，因为基本上也是在处理普通Java类，而我们对普通Java类的测试驱动已经相当熟悉了。

	模板封装了各种视觉元素

控件通常用模板语言绘制自己。这些控件和模板通常都附有配置文件（通常是XML），配置文件中带有信息，告诉框架控件与模板中的标记间的对应关系，控件初始化时需要哪些资源，以及客户端触发的事件与控件实例和方法的映射关系等。有些框架大量使用了Java 5注释语法，把额外的配置与控件源代码放在同一个源文件中。在Wicket框架中，甚至连页面都是由Java类来表示的，只剩下HTML是非Java代码，当然XML除外。

	可测试性方面的差别

我们刚才说过测试驱动控件开发不是问题，其实不用部署到容器而测试页面模板同样可行。基于JSF的开源框架Apache Shale项目，提供了一个库，包含javax.faces接口的测试替身以及许多基类供JUnit测试扩展。这些基类为一些关键的JSF接口提供了伪实现，这对JSF的测试工作至关重要。

Tapestry和JSF都不能完全支持单元测试，我们要写大量代码才能完成想要的测试。不少JSF和Tapestry的开发人员已经接受了现实，屈从容器内（in-container）的测试或功能测试了。

正是由于这个原因，我强烈推荐Wicket，这个框架简直就是为了可测试性而生的。接下来我们一起进入Wicket页面和控件的世界，看看在此环境下如何进行测试驱动。

5.4.2　用测试先行的方法开发Wicket页面

Wicket是种开源的基于控件的Web框架。虽然基于控件并不是什么新概念，不过Wicket的实现方法却很特别。我们先来看看Wicket里面有什么，以及Wicket应用由什么构成吧。

	简洁，跳出配置泥潭

首先，Wicket中只有Java或者HTML代码（或者JavaScript，CSS）。开发视图模板时不会用到任何脚本语言，只有HTML。所有的逻辑，包括视图逻辑，都在Java类中。实际上基于Wicket的Web应用本身就是一个Java类，这个类继承自org.apache.wicket.protocol.http.WebApplication。Web页面也是Java类，继承自org.apache.wicket.markup.html.WebPage。

Wicket唯一的配置工作就是在Web.xml中注册WicketFilter，告诉容器你的应用程序的名字，添加filter-mapping，把WicketFilter绑定到应用程序的URL上等，见代码清单5-25。

 代码清单5-25　Wicket应用的Web.xml样例

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
　
 "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
　
 <filter>
 <filter-name>MyWicketApplication</filter-name>
 <filter-class>org.apache.wicket.protocol.http.WicketFilter</filter-class>
 <init-param>
 <param-name>applicationClassName</param-name> /*（以下2行）Wicket需要应用类*/
 <param-value>com.tddinaction.wicket.MyWicketApp</param-value>
 </init-param>
 </filter>
　
 <filter-mapping>
 <filter-name>MyWicketApplication</filter-name> /*（以下2行）WicketFilter处理所有的HTTP问题*/
 <url-pattern>/*</url-pattern>
 </filter-mapping>
</web-app>

以上是构建一个简单的Wicket应用所需的所有配置文件。要深入配置Wicket应用，可以修改应用类，或者在web.xml的init-param中传入applicationFactoryClassName，替代“applicationClass- Name”，见代码清单5-25。

	构建主页

下载完JAR文件，构建好目录结构后，要做的第一件事就是创建应用程序类。因为我们要采用测试驱动的方法构造出健康的代码，并保持这种健康状态，所以继续测试先行吧，如代码清单5-26所示。

 代码清单5-26　编写应用程序类和主页

import org.apache.wicket.protocol.http.WebApplication;
import org.junit.*;
　
public class TestApplicationClass {
 @Test
 public void homePageHasBeenDefined() throws Exception {
 WebApplication app = new MyWicketApp();
 assertEquals(MyHomePage.class, app.getHomePage());
 }
}

这个测试告诉我们两件事。第一，MyWicketApp应该继承Wicket的WebApplication类。第二，MyWicketApp的getHomePage方法应该返回主页类。这个例子也很好地说明了Wicket用类表示页面的方法——只需要传递页面对象，而Wicket会处理剩下的事情。

代码清单5-27中的实现就可以让红条变绿条了，没宇宙空间技术那么复杂吧。

 代码清单5-27　实现应用程序类

import org.apache.wicket.protocol.http.WebApplication;
import org.apache.wicket.Page;
　
public class MyWicketApp extends WebApplication {
　
 public Class<? extends Page> getHomePage() {
 return MyHomePage.class;
 }
}

应用程序类中的getHomePage用来通知Wicket当用户访问我们的应用程序时，应当显示哪个页面。要使代码通过编译，显然我们需要创建MyHomePage类，如下所示：

import org.apache.wicket.markup.html.WebPage;
　
public class MyHomePage extends WebPage {
}

就是这样。我们看到的是一个Wicket风格的空白页。这页面确实什么功能也没有。为了让Wicket知道如何显示页面，我们需要创建HTML模板。不过不能直接添加模板，只有手里握着个失败的测试时，我们才有权添加新功能！

	用WicketTester做测试

Wicket中包含一个名叫WicketTester的类，这个类是Wicket项目重视可测试性的证据之一。WicketTester类用来在容器外运行Wicket页面和控件。我们为主页写了个小测试来演示如何使用WicketTester。代码清单5-28演示了使用WicketTester的JUnit测试类。

 代码清单5-28　我们的第一个WicketTester测试

import org.junit.*;
import org.apache.wicket.util.tester.WicketTester;
　
public class TestMyHomePage {
 @Test
 public void homePageHasWelcomeText() throws Exception {
 WicketTester tester = new WicketTester(); /*❶（以下2行）为页面创建WicketTester*/
 tester.startPage(MyHomePage.class);
　
 tester.assertRenderedPage(MyHomePage.class); /*❷（以下2行）检查渲染错误*/
 tester.assertNoErrorMessage();
　
 tester.assertContains("Welcome to the home page!"); // ❸判断页面内容
 }
}

在代码清单5-28的代码中，我们首先创建了个WicketTester的实例，并将其指向我们要测试的页面❶。然后我们验证待测页面能被渲染出来，且没有任何错误信息或重定向动作，最后验证了渲染出的HTML中包含“Welcome to the home page!”字样❷。为通过这个测试，我们必须添加MyHomtPage.html❸，见代码清单5-29。

 代码清单5-29　最简单的主页（首页）

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns:wicket="http://wicket.sourceforge.net/">
 <body>
 <p>Welcome to the home page!</p>
 </body>
</html>

按照习惯，Wicket的视图模板通常与对应页面的Java类存放在同一个目录下。这种方法咋一看来很怪，不过很实用，因为这样我们就不必四处搜寻视图模板了，它就和它的页面类兄弟住在一起。除此之外还有其他方法组织文件，不过需要额外的配置，要么告诉Wicket视图模板都放在哪里了，要么自定义资源定位器（resource locator）。后一种方法显然更麻烦，不过更灵活。

我们刚才都见到了，要测试驱动一个简单的Wicket页面，JUnit加WicketTester就可以胜任。不过大部分应用都不是静态网页，所以最好试着用测试驱动的手法给页面添加新功能。下面我们来用控件把新创建的主页与另一个页面连接起来。

	加入控件

前面提到过，Wicket中所有的东西都由Java类表示，控件也一样。在Wicket中，控件可以用来表示网页中的任何动态元素。例如Wicket页面中连向其他页面的链接是控件，有动态内容的标签是控件，包含元素的表单也是控件。

很简单吧？来，先添加个新测试，在主页上驱动出一些控件。在从代码清单5-28演化而来的代码清单5-30中也同样使用了WicketTester。

 代码清单5-30　用测试验证控件存在于页面中

import org.junit.*;
import org.apache.wicket.util.tester.WicketTester;
　
public class TestMyHomePage {
 @Test
 public void homePageHasLinkToLoginPage() throws Exception {
 WicketTester tester = new WicketTester();
 tester.startPage(MyHomePage.class);
 tester.assertRenderedPage(MyHomePage.class);
 tester.assertNoErrorMessage();
　
 tester.assertLabel("welcomeMessage", /*❶（以下2行）希望找到名为WelcomeMessage的控件*/
 "Welcome to the home page!");
 tester.assertPageLink("linkToLoginPage", LoginPage.class); // ❷以及到登录页面的链接
 }
}

代码清单5-30中的测试说，❶页面中应该包含一个Label控件，名字叫做welcomeMessage，内容是Welcome to the home page！，❷另外页面中还应该包含叫做loginPage的PageLink控件，链接到LoginPage。我们需要添加LoginPage类以通过编译。

public class LoginPage extends org.apache.wicket.markup.html.WebPage {
}

运行测试，测试结果表明页面中并没有目标控件，来加一个吧。

给页面添加控件有两个步骤：首先，在页面类中添加控件；然后，在HTML模板中添加标记，让Wicket知道如何渲染控件。代码清单5-31中的代码演示了如何在MyHomgPage类中添加Label和PageLink控件。

 代码清单5-31　向主页中添加控件

import org.apache.wicket.markup.html.WebPage;
import org.apache.wicket.markup.html.basic.Label;
import org.apache.wicket.markup.html.link.PageLink;
　
public class MyHomePage extends WebPage {
 public MyHomePage() {
 add(new Label("welcomeMessage",
 "Welcome to the home page!"));
 add(new PageLink("linkToLoginPage", LoginPage.class));
 }
}

就这样。不算麻烦吧？在代码清单5-31的代码中我们实例化了Label控件和PageLink控件，把LoginPage对象传入控件的构造函数，指定控件所属的容器。这样就可以构造出Wicket的控件树了。MyHomgPage的控件树包含两个子控件，分别为welcome-Message和linkToLoginPage。如果我们运行5-30中的单元测试，我们会得到详细的出错信息，指出下一步需要做的事情。

org.apache.wicket.WicketRuntimeException: The component(s) below failed to
 render. A common problem is that you have added a component in code but
 forgot to reference it in the markup (thus the component will never be
 rendered).

问题就出在这里，我们只把控件添加到了控件树中，却没有在HTML模板中引用这些控件。代码清单5-32中的代码能够解决这个问题。

 代码清单5-32　将控件加入HTML中

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns:wicket="http://wicket.sourceforge.net/">
 <body>
 welcome message goes here
 Please, log in.
 </body>
</html>

从上面这段代码中，你也许可以看出Wicket渲染视图模板的方式。遇见带有属性wicket:id的HTML元素时，Wicket会在控件树中查找对应的控件，并要求控件渲染自己，所以浏览器中显示的不是welcome message goes here而是Welcome to the home page!（或者Java代码中指定的任何值）。

现在我们的页面中已经有控件了，下面来试着在测试中与这些控件交互。毕竟有些控件也是有状态或行为的，能在页面中看见按钮并不代表按钮能以我们期望的方式工作。

	与控件交互

用WicketTester验证控件存在于页面中很简单。与控件交互，验证控件行为的正确性，如何？我们先来看个例子。

假设我们有个主页，主页上有个链接连到登录页面。我们来写个测试，验证点击链接后会跳转到登录页面：

@Test
public void interactingWithComponents() throws Exception {
 WicketTester tester = new WicketTester();
 tester.startPage(MyHomePage.class);
 tester.assertRenderedPage(MyHomePage.class);
 tester.clickLink("linkToLoginPage");
 tester.assertRenderedPage(LoginPage.class);
}

够简单吧？WicketTester提供了一个很方便的clickLink方法来模拟链接的点击。点击页面后，我们可以使用assertRenderedPage方法验证跳转到了正确的页面。

我们只是概览了Wicket框架，不过我们现在应该大致了解如何在基于控件的框架上进行TDD了。要获得此类技术更详细的介绍，请参照以下书籍：JavaServer Faces in Action1（Kito Mann著；Manning出版社，2004），Tapestry in Action（Howard M. Lewis Ship著；Manning出版社，2004），以及Wicket in Action（Martijn Dashorst与Eelco Hillenius著；Manning出版社，2008）。

1 中文版《JSF实战》已由人民邮电出版社出版。——编者注

5.5　小结
测试驱动Web开发不仅可行，而且能够发挥出TDD所有的优点，同时不会因为测试而使代码变得冗长。

所以，除了模型部分外，MVC中的控制器和视图部分也能够有效地应用TDD进行开发。虽然和写纯Java代码不完全一样，但是也相当接近。只要在测试类的父类中加入些测试运行所必需的功能，我们就可以完美地按照测试—编码—重构的TDD周期进行开发了，不用去考虑太多其他和测试无关的问题。

开发控制器时，我们不用花费精力和奇怪的API打交道，只将注意力集中在实现功能上。在实现过程中，可能会遇到本书第一部分中提到过的问题，这时只要应用第一部分中提供的解决方法就可以了。

虽然JSP和Velocity模板不像控制器那样容易测试，不过还是有办法可以测试驱动视图开发的，也不用部署到容器之中。JspTest框架能让我们在单元测试中迅速的完成JSP的渲染；用内嵌的Jetty web容器也是一种不错的解决方法。要测试驱动Velocity模板，我们基本不用任何外界帮助，因为用Velocity的API渲染页面不依赖于任何容器。

随着JSF及一些开源框架如Apache Tapestry、Wicket等的出现，基于控件的Web框架也逐渐升温。因为这类框架比请求—应答类型的框架更复杂，测试工作也稍显困难。不过由于Wicket框架具有很强的可测试性的意识，测试驱动Web开发就像逛公园一样轻松自在。

我们现在已经介绍完了Java EE web开发的相关问题，在下一章中，我们将会讨论所谓的数据访问层（data access layer），介绍如何进行TDD。

第6章　测试驱动数据访问

 资讯是民主社会的流通货币。

 ——托马斯·杰斐逊

数据无处不在。想想看，你开发的系统有几个不涉及数据持久化的？当然，万事无绝对，不过当今大部分企业应用中都会涉及数据持久化。因此，数据是这类系统开发工作的核心，也是开发人员工作的重点。此外，如果要选出企业级应用最重要的部分，数据一定会当仁不让。虽然很多开发人员都用眼睛观察数据来判断对错，不过这种方法效率低且容易出错，这可不是我们专业开发人员能够忍受的。

在前面的章节中，我们并没有特别关注数据部分，也没有提到过数据的来源。虽然我们曾用TDD实现过数据持久化的功能，不过并没有讨论过持久层本身的设计实现问题。本章将专门讨论数据层的相关问题。

本章结束后，我们将会掌握数据访问及维护代码的测试驱动方法，无论数据是在文件系统中还是在数据库中。我们将会重点讨论一些可测试性好的设计方法和一些有用的工具，这些知识能帮我们顺利地进行TDD。与此同时，我们也会讨论单元测试、集成测试及测试数据管理方法等各种技巧的优劣。

现在开始吧。

6.1　探索问题领域
放箭之前，先瞧瞧靶子。首先，我们要弄清数据访问代码与“普通”代码在测试驱动方法上的区别。

数据访问代码通常会跨越系统架构的很多层，这是它与其他类型的代码最显著的差别。另一个主要差别在于数据访问代码通常会使用第三方API，这给测试工作带来了一定难度。我们需要想办法不让这些第三方的东西总访问磁盘或数据库服务器。

下一步，我们来确定在Java或Java企业应用中，数据库访问代码通常会跨越哪些边界。然后会学习一个帮我们提高数据访问代码可测试性的设计模式。

6.1.1　跨越边界的数据访问

数据访问代码显然会跨越系统边界。应用逻辑会访问持久化逻辑，持久化逻辑会使用Hibernate或EJB3等持久化框架，或直接使用 JDBC（JDBC API通常由JDBC驱动程序提供实现，驱动程序会直接和关系数据库交互）。层级关系见图6-1。

图6-1　系统的逻辑层次划分

 提示　在本书的在线章节中，会讲到用EJB 3.0持久层框架，测试驱动数据访问代码的方法。

理想情况下最好只测试驱动我们编写的代码，而不调用下面各层。测试之间应当相互独立，而且运行速度要足够快。在测试中包含太多层会增加耦合性也会延长测试运行时间，同时配置其他层所需的工作量也不小，多一事还不如少一事。而且，这些层开发时或许尚不存在。

在这种情况下，我们该如何测试驱动图6-1中各层呢？开发应用逻辑层（application logic layer）时，可以使用持久化逻辑伪实现。我们可以验证业务逻辑代码正确地调用了持久层方法，传入了正确的参数。那么我们在开发持久层时应该模拟JDBC API（或其他任何正在使用的持久化框架接口），还是该访问数据库？应该使用真实的数据库，还是使用轻量级，速度飞快的，但和真实数据库系统有一定差别的内存数据库？

在本章的后半部分我们将详细讨论这些问题。我们将用不同方法解决同一个问题，客观地对比每种方式的优劣。不过在这之前，我们先来熟悉一个设计模式，它能帮我们把代码恰当地划分到不同层之中。

6.1.2　用DAO模式分层

也许是因为Java EE社区一直很热衷于讨论设计模式和架构蓝图（architecture blueprints），或许是因为模式和蓝图本身就是正确的做事方式，不过无论是什么原因，在过去5年中，我见到的大部分Java EE系统都采用了数据访问对象（Data Access Object，DAO）模式1或其变体。

1 此模式在Core J2EE Patterns：Best Practices and Design Strategies （Deepak Alur, Dan Malks, and John Crupi; Addison-Wesley, 2003）一书中有详细讲解。

此模式是指每个持久化的领域对象（domain object）都应该有一个DAO接口负责其持久化工作。具体持久化方式有很多种，可以是关系数据库、对象数据库、或是文件系统上的一堆XML文件。对象本身及DAO的调用者并不知道对象从哪里来，到哪里去，以及是否具有持久性。因此，我们可以随意替换持久化的具体实现技术，而上层应用程序对此不会有一丝察觉。见图6-2。

图6-2　DAO模式：由DAO接口创建、获取及持久化的领域对象，对底层的数据库技术一无所知

接下来，我们会再次使用此模式来解释测试驱动数据访问代码应用各种不同技术的过程。为了让你更好地了解DAO接口，并为后面的举例做基础，代码清单6-1展示了一个简单的PersonDao接口持久化Person对象的过程。

 代码清单6-1　PersonDao接口对应用代码隐藏了实现细节

public interface PersonDao {
 Person find(Integer id);
 void save(Person person);
 void update(Person person);
 void delete(Person person);
 List<Person> findAll();
 List<Person> findByLastname(String lastname);
}

比起把数据访问代码与应用逻辑代码混在一起，使用DAO模式的好处显而易见。另外使用DAO模式还可以缩减代码量。如果使用了Hibernate或Spring框架的JdbcTemplate等现成的开源持久层框架，能够显著加快开发速度。好的框架能帮你做不少工作，开发人员就可以专心开发持久化逻辑，而不用在持久化技术细节上花太多功夫了。

 提示　PersonDao所引用的Person类的源代码等可以在本书配套网站上的源代码中找到。

6.2　用单元测试驱动数据访问
多年来Java开发人员一直使用JDBC访问关系数据库。特别是20世纪90年代的IT业泡沫时期，几乎所有人都摇身一变，成了Java开发人员。在这个时期，许多系统的源代码中随处可见JDBC代码。这带来了很多麻烦，例如想要改变数据库某列的名字，需要找到列名出现的所有地方，一一进行修改才行。这么做显然是错误的，今天的开发人员已经对这种错误有更深刻的认识了。

本节中，我们将会学习Spring框架的JdbcTemplate，还有Hibernate，这两种框架能够显著简化开发工作。另外，我们也会学习如何使用单元测试来驱动这类代码的开发。不过在这之前，我们先来学习Java数据库访问的基础——JDBC API——以及如何测试驱动JDBC数据访问代码。

在开始前，应该先给单元测试一个明确的定义。我发现每个人口中的“单元测试”含义都不尽相同。有些人甚至把一个调用外部系统命令，创建出一个JVM实例，然后运行另外一个Java程序的JUnit测试也称作单元测试。这种测试可以称作开发人员测试（developer test），不过在我看来绝对不是单元测试。引用Michael Feathers对单元测试的定义1，在以下情况下一个测试不是单元测试：

1 见《修改代码的艺术》，人民邮电出版社，2007年出版。

	访问了数据；

	有网络通信；

	访问了文件系统；

	不与其他任何单元测试同时运行；

	必须配置好环境后才能运行。

做这些事情要费一定周折，而且会使测试运行速度变慢——比用测试替身要慢几个量级。因此最好不要在单元测试中频繁的访问数据库，而是使用伪实现。在本节中，我们将会使用前面提到的各种框架和API，结合使用测试替身，驱动数据访问对象的开发。

6.2.1　JDBC API的缺点

JDBC是不少人选择Java平台进行开发的主要原因之一，因为统一的数据库访问方式非常重要。不过，JDBC的API若能再简单些就更好了。JDBC迫使开发人员编写try……catch块来处理checked 异常，确认各种资源都能够释放成功，等等机械式的代码。此外，复杂的JDBC代码很不容易测试。下面我们来试着用JDBC技术测试驱动出代码清单6-1中PersonDao的实现。

我们先来实现PersonDao的findByLastname方法。因为要使用JDBC技术实现DAO，所以需要创建JDBC连接的测试替身。当DAO执行查找操作时，这个假的JDBC连接会返回一个硬编码的值。而DAO该从哪里获取JDBC连接？当然是DataSource。在测试环境下，我们需要给DAO传入一个DataSource的测试替身。而在产品模式下，我们会使用依赖注入给DAO传入真实的DataSource。如下所示：

JdbcPersonDao dao = new JdbcPersonDao();
dao.setDatasource(datasource);
List<Person> people = dao.findByLastname("Smith");

现在，我们首先需要创建一个DataSource对象，避免在单元测试中连接数据库。

	创建测试替身

现在还缺DataSource，可以用EasyMock创建一个模拟对象。除去static import声明，用EasyMock创建模拟对象只需要一行代码：

import static org.easymock.EasyMock.*;
...
DataSource datasource = createMock(DataSource.class);

执行findByLastName时，DAO应该会从DataSource获取Connection对象。为此，我们还需要一个Connection接口的测试替身。然后，DAO会调用connection对象来准备（prepare）一个含有last name参数的SQL语句。为此，我们还要准备一个PreparedStatement接口的测试替身。看看一共有多少模拟对象：

DataSource datasource = createMock(DataSource.class);
Connection connection = createMock(Connection.class);
expect(datasource.getConnection()).andReturn(connection);
String sql = "SELECT * FROM people WHERE last_name = ?";
PreparedStatement stmt = createMock(PreparedStatement.class);
expect(connection.prepareStatement(sql)).andReturn(stmt);
　
stmt.setString(1, "Smith");

已经不少了，但后面还有。接下来，我们会让DAO执行查询语句。因为executeQuery方法会返回一个java.sql.ResultSet对象，所以还要继续创建测试替身。

	用static mock创建ResultSet的伪实现

这次，我们不打算用EasyMock了，而会使用MockObjects.com的类库提供的伪实现。如果为每个方法调用都设置期望，会使测试代码量急剧膨胀（特别是对于大结果集），而我们对DAO如何从ResultSet中取出结果毫无兴趣，只关心能否从数据集中取出正确的people列表，所以没有必要使用EasyMock。

下面这段代码配置了MockMultiRowResultSet对象，同时使PreparedStatement对象的executeQuery方法返回配置好的结果集对象。

MockMultiRowResultSet resultset = new MockMultiRowResultSet();
String[] columns = new String[] { "first_name", "last_name" };
resultset.setupColumnNames(columns);
List<Person> smiths = createListOfPeopleWithLastname("Smith");
resultset.setupRows(convertIntoResultSetArray(smiths));
expect(stmt.executeQuery()).andReturn(resultset);

一方面，填给MockMultiRowResultSet对象的数据必须是二维数组，另一方面，要验证DAO的findByLastname方法返回的Person对象的数组的正确性，我们需要有正确数据来作对比。在这种情况下，为了减少数据重复，我们可以创建一个people对象列表，然后将这个列表转化为二维对象数组后传给MockMultiRowResultSet，在对比DAO的输出时也可以直接使用这个列表。

当所有的工作都完成后，DAO应该释放掉所有的JDBC资源：

resultset.setExpectedCloseCalls(1);
stmt.close();
connection.close();

	为JDBC代码写测试

代码清单6-2为测试的最终形式，完整地描述出了DAO应当具有的行为。如果一切顺利，数据库中应该包含3条匹配的people数据。

 代码清单6-2　测试纯JDBC DAO实现

import static org.junit.Assert.*;
import static org.easymock.EasyMock.*;
import com.mockobjects.sql.*;
import org.junit.*;
import java.sql.*;
import javax.sql.*;
import java.util.*;
　
public class JdbcPersonDaoTest {
　
 @Test
 public void testFindByLastname() throws Exception {
 DataSource datasource = createMock(DataSource.class); /*❶（以下8行）模拟数据库连接*/
 Connection connection = createMock(Connection.class);
 expect(datasource.getConnection()).andReturn(connection);
 String sql = "SELECT * FROM people WHERE last_name = ?";
 PreparedStatement stmt =
 createMock(PreparedStatement.class);
 expect(connection.prepareStatement(sql)).andReturn(stmt);
 stmt.setString(1, "Smith");
　
 MockMultiRowResultSet resultset = /*❷（以下9行）模拟查询结果*/
 new MockMultiRowResultSet();
 String[] columns = new String[]
 { "first_name", "last_name" };
 resultset.setupColumnNames(columns);
 List<Person> smiths =
 createListOfPeopleWithLastname("Smith");
 resultset.setupRows(asResultSetArray(smiths));
 expect(stmt.executeQuery()).andReturn(resultset);
　
 resultset.setExpectedCloseCalls(1); /*❸（以下3行）释放资源*/
 stmt.close();
 connection.close();
　
 replay(datasource, connection, stmt);
　
 JdbcPersonDao dao = new JdbcPersonDao(); /*❹（以下6行）执行并验证*/
 dao.setDatasource(datasource);
 List<Person> people = dao.findByLastname("Smith");
 assertEquals(smiths, people);
 verify(datasource, connection, stmt);
 resultset.verify();
 }
　
 private List<Person>
 createListOfPeopleWithLastname(String lastName) {
 List<Person> expected = new ArrayList<Person>();
 expected.add(new Person("Alice", lastName));
 expected.add(new Person("Billy", lastName));
 expected.add(new Person("Clark", lastName));
 return expected;
 }
　
 private Object[][] asResultSetArray(List<Person> people) {
 Object[][] array = new Object[people.size()][2];
 for (int i = 0; i < array.length; i++) {
 Person person = people.get(i);
 array[i] = new Object[] {
 person.getFirstName(),
 person.getLastName() };
 }
 return array;
 }
 }

这个测试有些庞大。首先，我们用EasyMock创建出了DataSource、Connection、PreparedStatement等JDBC接口的模拟对象❶。然后，用MockObjects.com的静态模拟对象创建出了测试替身，供ResultSet使用❷。最后记录释放所有JDBC资源的期望行为❸，把模拟的DataSource注入到JdbcPersonDao中去，接着调用查找方法，把返回的Person对象列表与DataSource中的数据作对比❹。这个测试代码算不上紧凑（尽管我看过比这还糟糕的），但是用JDBC接口只能这样了。

	写代码通过测试

代码清单6-3中是findByLastname方法的完整实现。

 代码清单6-3　纯JDBC DAO的实现

import javax.sql.*;
import java.sql.*;
import java.util.*;
　
public class JdbcPersonDao implements PersonDao {
　
 private DataSource datasource;
　
 public void setDatasource(DataSource datasource) {
 this.datasource = datasource;
 }
　
 public List<Person> findByLastname(String lastname) {
 try {
 Connection conn = datasource.getConnection();
 String sql = "SELECT * FROM people WHERE last_name = ?";
 PreparedStatement stmt = conn.prepareStatement(sql);
 stmt.setString(1, lastname);
 ResultSet rset = stmt.executeQuery();
 List<Person> people = new ArrayList<Person>();
 while (rset.next()) {
 String firstName = rset.getString("first_name");
 String lastName = rset.getString("last_name");
 people.add(new Person(firstName, lastName));
 }
 rset.close();
 stmt.close();
 conn.close();
 return people;
 } catch (SQLException e) {
 throw new RuntimeException(e);
 }
 }
 // Other PersonDao methods not shown
}

目前只有在所有JDBC API调用都不抛出异常时连接才能正常关闭，所以还要继续写测试，验证即使API调用出现问题时连接也会正常关闭。

手工做所有工作当然很麻烦，所以需要选个好的框架替我们处理这些问题。有许多开源项目试图简化Java和Java EE应用程序中的数据访问过程，不过我们在这里只会挑其中两个进行介绍：Spring框架中的JDBC支持框架，和已经把ORM（对象—关系映射，object-relational mapping）带入Java主流的Hibernate框架。

先从Spring框架中的JdbcTemplate开始。

6.2.2　用Spring的JdbcTemplate简化开发

Spring框架中提供了JdbcTemplate类，目的是简化开发过程，让编码工作只集中在最核心的功能上。大多数JDBC代码都有某种固定模式，例如把try-catch结构与条件资源释放代码结合起来使用，确保所有资源都会被释放，等等。JdbcTemplate设计的初衷就是消除这些冗余代码。JdbcTemplate使用了类似于Template Method的设计模式2，开发人员只需要关注变化的部分，框架会处理其他重复代码。见图6-3。

2 见Design Patterns: Elements of Reusable Object-Oriented Software（Addison-Wesley，1994）。

图6-3　Spring框架提供的模板代码与开发人员提供的DAO实现之间的交互

Spring中的JdbcDaoSupport虚基类实现了许多数据访问功能，数据访问对象可以通过继承此虚基类来使用这些功能。见图6-4。

图6-4　Spring的JdbcDaoSupport提供了JdbcTemplate功能，DAO实现继承自JdbcDaoSupport

图6-4中的JdbcDaoSupport虚基类提供了一个getter方法，用于获取JdbcTemplate的实例。JdbcTemplate类封装了JDBC接口各种繁杂的的细节，提供了抽象层次较高的接口，例如：

List query(String sql, Object[] args, RowMapper rowMapper)

注意，此方法签名上没有使用到Connection、PreparedStatement等任何JDBC对象。我们只需要传入SQL语句、SQL语句中变量值数组和RowMapper即可。RowMapper是Spring定义的接口，用于记录和对象间的转换。RowMapper接口的完整定义如下：

public interface RowMapper {
 Object mapRow(ResultSet rs, int rowNumber)
}

RowMapper接口依赖于JDBC的ResultSet接口，不过这种依赖关系隐藏在RowMapper内部并且可以单独测试，因此不会给DAO的测试工作带来任何麻烦。此外，同一个RowMapper可以在所有此表的相关查询上进行重用。

除了query方法外，JdbcTemplate类还提供了许多其他方法。不过我们暂时不会深入介绍这些方法，而是先用这个query方法实现代码清单6-1中PersonDao的findByLastname方法。为此我们需要一个RowMapper把数据库记录转成Person对象，所以就从这点入手吧。

	实现RowMapper

在这个例子中，我们假设Person对象只有两个属性：姓和名。这两个属性分别对应于数据库的last_name和first_name两列。代码清单6-4中为相应的测试。

 代码清单6-4　测试Person对象的RowMapper实现

import org.springframework.jdbc.core.RowMapper;
import com.mockobjects.sql.MockSingleRowResultSet;
import java.util.*;
import org.junit.*;
import static org.junit.Assert.*;
　
public class PersonRowMapperTest {
　
 @Test
 public void testMappingRow() throws Exception {
 Person expected = new Person("John", "Doe");
　
 Map<String, Object> data = new HashMap<String, Object>(); /*❶（以下5行）测试模拟ResultSet对象*/
 data.put("first_name", expected.getFirstName());
 data.put("last_name", expected.getLastName());
 MockSingleRowResultSet rs = new MockSingleRowResultSet();
 rs.addExpectedNamedValues(data);
　
 assertEquals(expected,
 new PersonRowMapper().mapRow(rs, 1)); // ❷执行映射并对比结果
 }
}

在代码清单6-4中，我们首先创建出一个ResultSet对象❶，代表一条数据库记录，然后把RowMapper返回的值与Person实例作对比❷。实现如代码清单6-5所示。

 代码清单6-5　简单的PersonRowMapper实现

import java.sql.*;
import org.springframework.jdbc.core.RowMapper;
　
public class PersonRowMapper implements RowMapper {
 public Object mapRow(ResultSet rs, int rowNum)
 throws SQLException {
 return new Person(rs.getString("first_name"),
 rs.getString("last_name"));
 }
}

这段代码直接把数据库记录映射成了对象，不过这只是最基本的情形。除此之外还有其他情况需要考虑，例如把一个列的值映射到Person对象的多个属性上，Null值，Boolean类型和数值类型的转换，等等。针对每种情况都需要添加相应的测试及实现。

现在，既然已经有了PersonRowMapper实现，那么就可以继续前进，测试JdbcTemplate DAO的其他功能了。

	用JdbcTemplate测试驱动DAO

基于JdbcTemplate的DAO除了要实现PersonDao接口外，还要继承Spring框架的JdbcDaoSupport。JdbcDaoSupport提供了对JdbcTemplate的访问，DAO可以使用JdbcTemp late提供的方法操作数据，而资源清理会由框架来做。

现在我们要测试驱动出findByLastname方法，在实现中会用到query方法。此外我们还需要使用JdbcTemplate类的测试替身，其query方法会返回一个硬编码的Person对象的列表。

完整的测试代码见代码清单6-6。

 代码清单6-6　基于JdbcTemplate的PersonDao实现的完整测试

import static org.easymock.classextension.EasyMock.*;
import static org.junit.Assert.*;
import java.util.*;
import org.junit.Test;
import org.springframework.jdbc.core.JdbcTemplate;
　
public class JdbcTemplatePersonDaoTest {
　
 @Test
 public void testFindByLastname() throws Exception {
 final String lastName = "Smith";
 final List<Person> smiths =
 createListOfPeopleNamed(lastName);
　
 JdbcTemplate template = createMock(JdbcTemplate.class);
 template.query(/*❶（以下5行）从query()中返回硬编码的people列表*/
 eq("SELECT * FROM employee WHERE last_name = ?"),
 aryEq(new Object[] { lastName }),
 isA(PersonRowMapper.class));
 expectLastCall().andReturn(smiths);
　
 replay(template);
　
 JdbcTemplatePersonDao dao = new JdbcTemplatePersonDao();
 dao.setJdbcTemplate(template); // ❷用模拟JdbcTemplate注入DAO
 assertEquals(smiths, dao.findByLastname(lastName)); // ❸DAO应像这样返回列表
　
 verify(template);
 }
　
 private List<Person> createListOfPeopleNamed(String lastName) {
 List<Person> expectedList = new ArrayList<Person>();
 expectedList.add(new Person("Alice", lastName));
 expectedList.add(new Person("Billy", lastName));
 expectedList.add(new Person("Clark", lastName));
 return expectedList;
 }
}

代码清单6-6中的测试首先创建了一个JdbcTemplate的模拟对象，当以参数SELECT * FROM employee WHERE last_name = ?调用query方法时，query方法会返回一个硬编码的Person对象列表❶。然后我们把模拟的JdbcTemplate对象注入到DAO中❷，接着调用finder方法，最后验证返回的结果与query方法的查询结果一致❸。

代码清单6-6中的代码用到了EasyMock的自定义参数匹配功能。这是因为EasyMock不支持数组匹配，而我们又正好需要这项功能。你可能对EasyMock的自定义匹配器不大熟悉，所以有必要在这里做个简要介绍，以了解EasyMock是如何处理query调用的。

	EasyMock及自定义匹配器

在EasyMock中，要录制期望行为，通常都会直接调用方法，然后再调用andReturn方法，告诉EasyMock该方法的返回值。在播放模式下，EasyMock会记录所有方法调用。最后，在EasyMock验证模拟对象的交互行为时，EasyMock会把期望的函数调用与实际函数调用做对比，用对象的equals方法判断参数是否相等。

有时equals方法不能正确对比实际参数与期望参数——比如数组，即使两个数组含有完全一样的对象，数组也不相等。此外，有时候我们并不关心参数的精确值。例如，只希望确认字符串以某个字符开头，或者某个对象属于某个类型等。针对这些情况，EasyMock提供了机制以改变equals默认行为。

在代码清单6-6中，有如下几条语句：

template.query(
 eq("SELECT * FROM employee WHERE last_name = ?"),
 aryEq(new Object[] { lastName }),
 isA(PersonRowMapper.class));

eq、aryEq以及isA等方法都由EasyMock中静态导入（static import）。这些方法目的只有一个：在当前执行环境中注册IArgumentMather接口的实现。eq方法注册的实现会直接调用对象的equals方法来对比两个对象。argEq方法注册的实现会先对比数组的长度，如果长度相等，则遍历数组元素，调用每个元素的equals方法做对比。isA方法所注册的实现用于检查参数是否是指定类的实例。

由于Java语言自身的语义，eq、aryEq以及isA方法会先于query方法执行。所以当模拟对象的query方法被调用时，新的参数匹配器已经注册完成，在稍后的replay模式下，EasyMock会使用这些匹配器。

在EasyMock项目的网站上，可以找到更多关于框架的高级特性。现在，我们来继续PersonDao的实现工作吧。

	用JdbcDaoSupport实现DAO

在测试中，我们把JdbcTemplate注入给了DAO，期望DAO会调用JdbcTemplate的query方法，且参数符合一定规则。这基本上就是DAO的全部工作了，JdbcTemplate会完全负责JDBC资源的清理工作。代码清单6-7中为DAO的完整实现。

 代码清单6-7　基于JdbcTemplate的PersonDao实现

import java.util.List;
import org.springframework.jdbc.core.RowMapper;
import org.springframework.jdbc.core.support.JdbcDaoSupport;
　
public class JdbcTemplatePersonDao extends JdbcDaoSupport
 implements PersonDao {
　
 public List<Person> findByLastname(String lastname) {
 String sql = "SELECT * FROM employee WHERE last_name = ?";
 String[] args = new String[] { lastname };
 RowMapper mapper = new PersonRowMapper(); // 使用PersonRowMapper将对象进行行转换
 return getJdbcTemplate().query(sql, args, mapper); // 将难题委托给JdbcTemplat
 }
}

JdbcTemplate消除了数据访问对象中的所有重复代码，开发人员只需将精力集中在查询逻辑上——这使测试更紧凑，也更容易维护。

JdbcTemplate给数据访问代码的编写和测试带来的便利毋庸置疑，不过我个人更喜欢下面要介绍的Hibernate框架。

6.2.3　用Hibernate轻松地做TDD

虽然Spring的JdbcTemplate及RowMapper简化了JDBC代码的编写工作，不过映射领域对象到数据库列的代码依旧很无聊，最好能省掉这部分工作。给领域对象添加属性时，肯定会修改领域对象的代码，既然领域对象定义已经修改了，那为什么还要重复地改RowMapper来映射新属性呢？如果持久层能够自己处理新属性，岂不是更好？

现代ORM框架，例如Hibernate，已经能够做这类工作了。如果使用Hibernate，我们只需要给字段添加annotation即可！而框架会把领域对象中标有注释的字段映射到数据库表的对应列上。合理的默认行为是关键所在。领域对象的大部分字段都需要持久化，但如果不需要，则可以给此字段标上@javax.persistence.Transient，或者加上transient关键字即可。

这些优秀特性使得Hibernate成了Java领域最流行的持久化框架之一。Hibernate应用广泛，所以最好能掌握其用法，特别是要学会如何测试或者测试驱动基于Hibernate的数据访问对象。下面，我们先来了解一些Hibernate API的主要概念，然后再来看看Hibernate会如何改变单元测试的编写方式，以及如何简化数据访问代码。

	Hibernate API精要

Hibernate完全封装了JDBC API。不过若有必要，用户可以绕过Hibernate的封装，直接访问底层的JDBC连接。另外，Hibernate还提供了特殊的查询语言HQL（Hibernate查询语言，Hibernate Query Language），如果需要使用底层数据库的特殊功能，那么也可以直接使用SQL。

SessionFactory、Session和Query是Hibernat中最重要的抽象；这些类之间的协作关系见图6-5。

SessionFactory是Hibernate的基础。它封装了DataSource，对外提供接口以供调用，此外，它还提供访问Session的功能。Session基本等同于JDBC连接，区别在于Session会使用JDBC API做持久化及优化工作。有了Session对象，我们就可以直接调用它提供的方法做基本的CRUD操作了，也可以用Session创建出的Query对象进行查询。而Query主要用于构建动态查询。

图6-5　SessionFactory、Session和Query接口是Hibernate API中的主要概念

要用Hibernate实现数据访问对象，这三个接口就够了。那么下一个问题是，既然这些接口的实现都由SessionFactory负责提供，那么如何获得SessionFactory？你可能会想，DAO能够通过依赖注入拿到SessionFactory。不过就算是依赖注入，那也要先有一个对象，才能够做注入。这个问题有两个答案，都涉及了Configuration类。

第一种方式相对常见。首先在类路径中添加一个外部配置文件，此文件可以是属性文件（hibernate.properties）也可以是XML文件（hibernate.cfg.xml）。然后让Configuration类加载配置文件，构建出SessionFactory。SessionFactory的各项属性，如连接池、缓存，等等都会从配置文件中读取。

另外一种方式不太常见。我们可以直接用Java代码创建出Configuration对象，然后从此对象中获取一个动态配置的SessionFactory对象。由于可以在代码中动态配置，所以用JUnit等测试框架构建动态集成测试时，这种方式更方便。而以配置文件的形式管理测试的配置，更容易与产品配置保持一致。

本章主要内容是TDD，不是Hibernate，所以先介绍这么多吧。要构建Hibernate DAO，目前了解的SessionFactory、Session和Query的相关知识已经足够了。而且，为了避免在单元测试中访问数据库，我们打算模拟（mock）所有这些东西。下面来用Hibernate再实现一遍PersonDao吧。

	写测试验证期望的交互行为

下面来构建基于Hibernate的DAO吧——API相当简单，模式也很容易理解，基本上就是体力活（这是好事，因为我们可以在测试间共享setup步骤）。

假设现在我们要实现DAO中的findByLastname方法。首先，我们需要SessionFactory及Session。此外，还需要使用Query对象实现查找功能。在测试中先用EasyMock创建出这三个接口的动态模拟对象，见代码清单6-8。

 代码清单6-8　测试驱动基于Hibernate的DAO的基础设施

import static org.easymock.EasyMock.*;
import org.junit.*;
import org.hibernate.*;
import org.hibernate.classic.Session;
public class HibernatePersonDaoTest {
　
 private SessionFactory factory;
 private Session session;
 private Query query;
　
 @Before
 public void setUp() {
 factory = createMock(SessionFactory.class);
 session = createMock(Session.class);
 query = createMock(Query.class);
 }
}

接下来就可以写测试了。我习惯在测试的前几行代码中定义HQL语句及查询参数。例如，用姓氏找人的测试可以写成：

@Test
public void testFindByLastname() throws Exception {
 String hql = "from Person p where p.lastname = :lastname";
 String lastname = "Smith";
 ...
}

此外，查找叫做Smith的人时，可以让模拟对象返回Person列表。下面来添加一群Smiths：

...
String name = "Smith";
List<Person> theSmiths = new ArrayList<Person>();
theSmiths.add(new Person("Alice", name));
theSmiths.add(new Person("Billy", name));
theSmiths.add(new Person("Clark", name));
...

这样就可以了。接下来我们要定义DAO与Hibernate API之间的交互，这是测试工作的核心。

我们来假设当前的架构支持用横切（crosscutting）方式开关回话，就像Servlet过滤器（filter）一样，让开发人员免于开关回话工作。

这样，所有的DAO类都会使用当前Session，而不是各自使用SessionFactory创建出的新Session。接下来，因为已经有了Session对象，DAO应该用Session创建出Query对象，并作为参数传入HQL。最后，给Query对象传入查询参数后，DAO应该让Query对象列出所有匹配的Person对象（然后返回对象列表）。代码清单6-9中是对应的EasyMock代码。

 代码清单6-9　为Hibernate DAO设置期望行为

...
expect(factory.getCurrentSession()).andReturn(session);
expect(session.createQuery(hql)).andReturn(query);
expect(query.setParameter("lastname", name)).andReturn(query);
expect(query.list()).andReturn(people);
...

配置模拟对象，让SessionFactory的getCurrentSession方法返回Session的模拟对象，此模拟对象又会返回Query接口的模拟对象。配置完成后进入回放模式，执行代码。代码清单6-10中是findByLastname方法的完整测试。

 代码清单6-10　findByLastname方法的完整测试

import static org.easymock.EasyMock.*;
import static org.junit.Assert.*;
import org.junit.*;
import java.util.*;
import org.hibernate.*;
import org.hibernate.classic.Session;
　
public class HibernatePersonDaoTest {
　
 private SessionFactory factory;
 private Session session;
 private Query query;
　
 @Before
 public void setUp() {
 factory = createMock(SessionFactory.class);
 session = createMock(Session.class);
 query = createMock(Query.class);
 }
　
 @Test
 public void testFindByLastname() throws Exception {
 String hql = "from Person p where p.lastname = :lastname";
 String name = "Smith";
　
 List<Person> theSmiths = new ArrayList<Person>();
 theSmiths.add(new Person("Alice", name));
 theSmiths.add(new Person("Billy", name));
 theSmiths.add(new Person("Clark", name));
　
 expect(factory.getCurrentSession()).andReturn(session); /*❶（以下5行）记录期望的API调用*/
 expect(session.createQuery(hql)).andReturn(query);
 expect(query.setParameter("lastname",
 name)).andReturn(query);
 expect(query.list()).andReturn(theSmiths);
　
 replay(factory, session, query);
　
 HibernatePersonDao dao = new HibernatePersonDao();
 dao.setSessionFactory(factory); // 手动注入SessionFactory
 assertEquals(theSmiths, dao.findByLastname(name)); // 期望的询查方法返回硬编码列表
　
 verify(factory, session, query);
 }
 }

用EasyMock录制Hibernate API调用❶，比用EasyMock录制JDBC调用容易得多。一方面是因为Hibernate接口需要调用的函数并不多，另一方面由于Query接口中的方法大部分都有返回值，所以能使用紧凑的expect(...).andReturn(...)语法。有了依赖注入功能，也很容易让DAO实现使用测试替身。

关于Hibernate API的优点就先说到这里吧，下面来让代码清单6-10中的测试通过。

	做实现

有了Hibernate，DAO的查询方法很容易实现，见代码清单6-11。

我们把注入的SessionFactory保存在一个私有变量中❶，调用findByLastname方法时，会访问当前session❷，创建一个query对象❸，并填充该对象❹，然后进行查寻，返回结果列表❹。这就是代码清单6-11中的代码做的所有的事情。

 代码清单6-11　PersonDao的Hibernate实现。

import java.util.*;
import org.hibernate.*;
 public class HibernatePersonDao implements PersonDao {
　
 private SessionFactory sessionFactory;
　
 public void setSessionFactory(SessionFactory sessionFactory) {
 this.sessionFactory = sessionFactory; // ❶存储注入的SessionFactory
 }
　
 public List<Person> findByLastname(String lastname) {
 Session session = sessionFactory.getCurrentSession(); // ❷获得对话
 String hql = "from Person p where p.lastname = :lastname";
 Query query = session.createQuery(hql); // ❸创建查询
 query.setParameter("lastname", lastname); // ❹植入查询
 return query.list();
 }
}

实现非常简单——有点太简单了。在测试中，我们甚至没有验证DAO的异常处理功能。在养成忽略异常处理的坏习惯之前，我们来看看如何在基于Hibernate的DAO中处理这些问题吧。

	测试异常

我们假设当Hibernate API抛出异常时，DAO应当从findByLastname方法中抛出一个unchecked异常。这个异常中应该包含源异常，作为其产生原因。我们可以用6-12中的测试描述这个行为：

 代码清单6-12　测试即使抛出异常，session也会被正确关闭

@Test
public void testFindByLastnameReturnsEmptyListUponException()
 throws Exception {
 String hql = "from Person p where p.lastname = :lastname";
 String name = "Smith";
 HibernateException hibernateError = new HibernateException("");
　
 expect(factory.getCurrentSession()).andReturn(session);
 expect(session.createQuery(hql)).andReturn(query);
 expect(query.setParameter("lastname", name)).andReturn(query);
 expect(query.list()).andThrow(hibernateError); // ❶使list()抛出异常
　
 replay(factory, session, query);
　
 HibernatePersonDao dao = new HibernatePersonDao();
 dao.setSessionFactory(factory);
 try { /*（以下6行）list()findByLastname() 将HibernateException打包进RuntimeException*/
 dao.findByLastname(name);
 fail("should've thrown an exception");
 } catch (RuntimeException expected) {
 assertSame(hibernateError, expected.getCause());
 }
　
 verify(factory, session, query);
}

这次，不让模拟的Query返回people列表了，而是让其抛出HibernateException❶。相应的，在测试中不应该期待返回列表，而是期待抛出包装了源异常HibernateExpception的RuntimeException。

产品代码也要做相应的修改。我们的测试期望Query对象的list方法在失败时会抛出RuntimeException。要通过这个测试有种快捷的办法：用try-finally包住list方法，无论何时都抛出异常，然后再多写几个测试，驱动出正确的实现。不过这个功能很容易实现，所以没有必要这么做，直接实现功能即可。代码清单6-13中为完整实现。

 代码清单6-13　实现基本的异常处理

public List<Person> findByLastname(String name) {
 try {
 Session session = sessionFactory.getCurrentSession();
 String hql = "from Person p where p.lastname = :lastname";
 Query query = session.createQuery(hql);
 query.setParameter("lastname", name);
 return query.list();
 } catch (HibernateException e) {
 throw new RuntimeException(e);
 }
}

这段代码有些繁琐，不过健壮性很不错，因为它包括各种异常情况处理，例如在一个事务未执行完毕时数据库连接突然中断等。同样，如果想要DAO方法从SessionFactory中获取新的Session，那么测试中也应该验证，抛出异常时Session对象会关闭，不会让Session对象一直连接着数据库。

 用模糊匹配和命名查询减少重复

 测试中含有查询语句，使测试代码和产品代码中的数据产生了重复。可以让测试代码引用产品代码中定义的常量，不过这种解决方法也不够彻底。

 这个问题的解决方法之一是在测试中使用模糊匹配，并不精确验证查询语句。在进行集成测试时再验证查询语句的正确性。EasyMock等框架可以自定义匹配规则，在自定义的匹配规则中使用正则表达式等技术就可以轻松验证传入的查询语句的正确性。使用这种方法，摸拟对象只检查产品代码是否将正确的参数传给了API。

 用命名查询（named query）也可以减少重复。包括Hibernate在内的现代ORM工具都支持外部配置的命名查询。这样，写单元测试时就不用关注查询语句的语法了。当然，查询的正确性依然需要后续的集成测试来验证。

说到数据库连接，我们先从使用测试替身来测试驱动数据访问对象的工作中跳出来，从整体角度考虑问题。迄今为止，所有的测试都使用了测试替身，这些测试替身可以验证查询语句、查询参数是否正确，也可以返回硬编码的查询结果。不过，这些查询在真实数据库环境下能正确运行吗？

答案是：不知道。对使用的工具越熟悉，越有可能写出正确的查询语句，不过在真实测试过之前，还不能完全保证查询一定正确。这就是下面要讨论的——用集成测试而非单元测试驱动数据访问代码。

6.3　编码前写集成测试
目前，我们用单元测试驱动出的数据访问对象，在使用测试替身时能正常工作，这些测试替身都是依照我们对底层数据库的理解，或者什么样的查询可以得到期望的结果而配置的。使用模拟对象，可以有效地测试异常情况，简化测试数据维护。而另一方面，刚才已经提到了，只有在真实的数据库环境中执行数据访问代码，才能确保代码的正确性。

因此，驱动数据访问对象的开发时也应该使用“集成测试”。

6.3.1　什么是集成测试

在集成测试中，数据访问代码会访问真实的数据库。也就是说，集成测试会从持久层一直覆盖到关系数据库（参照图6-1）。就算不覆盖数据库，至少也要覆盖到JDBC驱动。这里的“至少”是什么意思？下面将会解释。

集成测试中，会端到端地测试数据访问组件、持久化框架以及关系数据库。不过在测试中，并不一定要选用与生产环境完全一致的数据库，也可以考虑选用其他数据库。而选用什么替代数据库，取决于开发环境和产品环境允许存在什么样的差别。

	产品和测试间的区别

在生产环境中，可能拥有一个应用程序服务器集群，运行着Oracle数据库，而应用程序中会使用集群DataSource，访问集群上的数据库。在生产环境中，持久层会调用持久化框架，持久化框架会访问JDCB连接，JDBC连接会访问集群JDBC驱动，集群JDBC驱动又会访问其他一些东西，然后才会真正地访问数据库。这些特性使得系统具有高可用性和高扩展性，不过这些东西比起硬编码查询结果的测试替身，运行速度还是要慢几个数量级。而在TDD过程中，执行速度至关重要。

并不是所有系统都需要一个重量级的，支持负载均衡的集群。有些系统只需要一个独立地运行在本地的关系数据库。有些系统甚至会部署一个内嵌的关系数据库。尽管不同系统使用的数据库之间区别很大，但只在要某种数据库上进行过集成测试，我们就有理由相信持久化逻辑在其他类型数据库上也不会有问题。

那么，在集成测试中，应该针对数据访问代码的哪些方面进行测试呢？有哪些是单元测试没有覆盖到的？

	单元测试中漏掉了什么

测试一定要运行得飞快。就算达不到这种速度，至少也不能差很多。集成测试环境并不一定要与产品环境完全相同。回顾为数据访问代码编写单元测试时所作的基本假设，存在3条最大的风险：

	关于数据库模式（database schema）和领域模型的假设；

	关于所使用的查询语句的假设；

	关于ORM的假设。

持久化API的调用不会有问题，因为在单元测试中已经进行了验证。JDBC驱动也不会有问题，因为这种第三方代码应该能正常工作1。所以，可以集中讨论上面列出的3条风险。

1 为第三方软件编写测试也是可以的，例如learning test，不过这类测试与测试驱动数据访问代码毫无直接关系。

我们做了许多关于数据库模式和领域模型的假设，且这些假设大多与字段名和列名相关。这种假设有一定的风险，因为数据库访问代码是通过字符串，而不是通过编程语言自身的语法对这些字段或列进行引用的，因此编译器无法进行验证。

同样，在编译器看来，查询语句也只不过是字符串。其正确性取决于我们对查询语句语法的理解，有时候还取决于数据库支持的语法。因此，我们需要透彻理解所使用的工具，不过即便如此，仍旧可能出错。

关于ORM的假设实际上是对上面第1条假设的扩展。例如在为Hibernate DAO编写测试时，我们会配置模拟对象，期望调用查询函数时，会使用特定的查询语句作为参数进行查询，相应地查询函数会返回查寻结果。这样，我们实际上对查询中相关字段的映射做了假设。命名规则的确能够帮助减少很多问题，即便如此，拼写错误仍在所难免，这种错误可能会在产品环境中让客户发现——原来lastname错拼写成了lastName。

所以，我们需要想办法降低这些假设带来的风险。

	如何进行弥补

即使在TDD过程中构建出了一整套测试，错误仍旧可能出现。还好，只要有一个标准的关系数据库，所有可能出现的问题都可以一一得到验证。就算此数据库与产品环境中的不一样也没关系。毕竟无论使用什么样的数据库，只要其支持我们使用的SQL功能即可，因为我们只需要针对数据库模式执行我们自己的JDBC代码，而不关心使用的是什么数据库；或者，如果我们在使用Hibernate等ORM框架，则需要在框架支持的数据库上运行持久化代码和框架代码。

如果说“任何数据库”都可以使用，听起来有失精准。所以，下面我们就来讨论可选的数据库及各种备选数据库的优缺点，好理解各种选择在灵活性方面会带来什么限制。另外，我们还会讨论为集成测试选择数据库时应当考虑的各种因素。

6.3.2　选择数据库

为集成测试选择数据库时，有几个因素需要考虑：

	测试环境与生产环境是否相近；

	在团队中共享及管理配置是否容易；

	访问和控制数据库是否容易。

下面从第一个开始讲解。

	与生产环境足够相似

虽然JDBC API都符合标准，我们在Java应用程序中访问的数据库也都遵循这个标准，但是仍然存在一些细微差别。就算所有集成测试都通过了，这种差别也可能导致我们的系统与产品环境的数据库不兼容，运转不正常，或者运行不稳定。

最明显的差别在于对标识（identity）及数据库特有的功能方面的支持。例如，只有高端商业数据库（像Oracle和DB2）才支持数据库序列（database sequence），而这种特性在广泛使用的开源数据库中则不常见（注释4：我希望这种情况会有所改变，标准 SQL:2003 已经加入了数据库序列。）。这类问题会给开发人员带来很多麻烦，例如，产品数据库为不支持SEQUENCE对象的MySQL，数据库中使用了自带的AUTO_INCREMENT列类型，而其他数据库基本上都不支持这种类型。此外，即使两个数据库都支持相同的概念，相关的语法也可能有差别。序列（sequence）、标识生成器（identity generator）以及存储过程就是常见的例子。

因为产品数据库及集成测试中使用的数据库的SQL语法要一致，常见的解决办法是把产生主键的过程从数据库端提取出来，放在应用程序的持久化层。此方法可能会导致其他问题，要解决这些问题，又要使用一些专属的数据库特性。在应用程序中产生标识并不是为了绕过数据库带来的问题，因为代码应该能完全控制领域模型的标识信息。

实际上，我们需要在架构复杂性（让一部分应用逻辑流到数据库端）和代码复杂性（实现序列生成器）之间做出取舍。还好，很多持久化框架（包括Hibernate）已经提供了这类功能。Hibernate提供了主键生成器，这个生成器是建立在独立的标识生成算法及序列列与标识列等数据库概念之上的。

关键字的差别是影响数据库之间兼容性的另一个常见原因。例如，现有系统使用的是MySQL，而集成测试却使用了HSQLDB2。假设有一个订单表，保存了订单的相关item，表中每一行都有一列指向本item所属的订单，另外还有一列表示清单中本item的位置。我猜开发人员有可能会把标识位置的列名叫做position，而不是index或ordinal。虽然position是个好名字，不过它却是HSQLDB的关键字。不过没关系，列名和表名都很容易改，对轻量级数据库的使用没多大影响。

2 http://www.hsqldb.org/

数据库之间还存在一些微小的差别，例如多列UNIQUE约束的语义。虽然绝大部分数据库的多列UNIQUE约束都允许至少其中一列的值为null，但是产品数据库或者集成测试数据库并不一定遵守这个规则。

虽然可能出现上述各个问题，不过在集成测试时使用不同的数据库依旧可行。毕竟提高生产力至关重要，如果能在集成测试中使用更快，更容易配置的数据库，能带来很多好处。这些好处足以让我们考虑修改代码，来保持测试数据库和产品数据库之间的兼容性了。

这里提到的易用性，并不只是针对某一个开发人员，而是针对整个团队。换言之，初始化过程应该很容易在团队内部共享，而且易于维护。

	易于共享的配置

配置开发环境以运行测试所需要的工作量是选择集成测试数据库时要考虑的另外一个因素。理想情况下所有的环境应该都自动配置好，不需要任何手动干预。而实际上即使要手动安装数据库之类软件，只要配置过程不复杂，那么也是可以接受的。

若没有共享的配置，那么开发人员就需要自己维护配置，指定数据库服务器监听的端口，以及连接使用的用户名和密码。最好能够用配置管理系统维护这些配置信息，版本与软件自身版本相同，任何新的开发人员都不用手动配置。

维护工作的终极目标是让数据库服务器也从版本控制系统中下载，由build脚本自动安装。这种解决方案对于嵌入式数据库或者极其轻量的数据库（像HSQLDB或McKoi3等）才可行。稍后，我们将会看到如何在测试套件中嵌入HSQLDB，不过在这之前，先来讨论影响集成测试中数据库选择的第3个因素吧。

3 http://mckoi.com/database/

	服务器的访问及控制

架好数据库服务器让集成测试成功地运行，只不过是第一步。我们还需要想办法能在测试失败时迅速找出原因。测试失败原因取决于所采用的数据库服务器、JDBC驱动和持久化框架，有时可以从错误信息中轻易的找到，而有时却需要费时费力的调试方能弄清楚。有时候，找出错误可不那么容易，出现问题时，并不总会遇到异常告诉我们语法无效或者“表中无此列”。要分析出查询结果和期望不一致的原因会很困难，除非我们可以方便地访问数据库以浏览数据。

如果在本地安装一个独立的数据库服务器来响应来自网络的连接请求，那么浏览数据会变得很容易。我们可以随意选用任何图形化或者控制台界面的工具浏览数据，执行SQL语句，等等。而内嵌的数据库就没这么方便了，因为我们通常只能通过Java API读取数据库的内容，这肯定没有用图形界面访问那么方便。因此，两种方法各有利弊。

我个人更偏向使用HSQLDB这样的内嵌数据库，因为它能与测试套件紧密集成，还不用安装。不过用HSQLDB这类数据库的缺点刚才已经说过了，但要解决这类问题还是有办法的，例如可以做个小工具把数据库的数据导出到外部文件中。而且，基本上没有其他东西比HSQLDB的集成测试更快了。

接下来，我们将会详细讲解如何在集成测试套件中使用HSQLDB，以及如何测试驱动数据访问代码。不过别担心，这不是什么太空科技，不会太困难，而且我们会和往常一样小步前进。

6.4　集成测试实战
在本节中，我们将会给本章稍前部分写的基于Hibernate的PersonDao添加更多的功能。添加功能只是个实验，其主要目的在于确定出集成测试所需搭建的架构，以及可能出现的问题。虽然我们现在用的是Hibernate做持久化工作，不过在这个例子中学到的方法，也可以应用在其他技术栈上。

下面，我们会先写一个集成测试，把一个瞬态的对象持久化到数据库中。一旦搭建好测试的轮廓，我们将会试着使用内存数据库，学着给一个干净的测试数据库创建数据库模式。写完并通过测试后，我们会来讨论如何使用事务夹具让每个测试都能用到干净清洁的数据。

内容很多，现在就开始把！

6.4.1　第一个Hibernate集成测试

下一步我们会给Person对象对应的DAO编写集成测试。我们会用Hibernate框架做持久化，但是HibernatePersonDao目前还不存在。我们想让DAO能保存Person对象。在集成测试中持久化一个对象会带来一些问题，因为会往数据库中写入数据。写操作比读操作通常更复杂些，也涉及测试中如何维护数据库状态等问题。

 把握好度

 访问数据库的集成测试非常必要。不过尽管如此，若持久化操作都比较类似，那么通常没有必要端到端地集成测试所有操作。只让一部分具有代表性的读写操作的测试访问数据库。剩下的测试，使用测试替身就可以了。这样，运行测试的时间也会显著减少。

这是个新起点。第一步该做些什么？用意图编程，编写一个测试来验证，可以将DAO持久化过的Person对象从数据库中读取出来，怎么样？这主意听起来不错，开始吧。

	为测试画出轮廓

为了拥有持久化Person对象的功能，我们为测试勾勒出了轮廓，见代码清单6-14。

 代码清单6-14　第一个集成测试类的轮廓

public class HibernatePersonDaoIntegrationTest {
　
 @Test
 public void persistedObjectExistsInDatabase() throws Exception {
 SessionFactory sf = getSessionFactory(); // ❶创建了解Person类的SessionFactory
 HibernatePersonDao dao = new HibernatePersonDao();
 dao.setSessionFactory(sf);
　
 Person person = new Person("John", "Doe");
 dao.save(person);
 assertNotNull(person.getId()); // ❷持久化对象接收
 Session s = sf.openSession(); /*❸（以下3行）现在已在数据库中*/
 Object copy = s.get(Person.class, person.getId());
 assertEquals(person, copy);
 }
 }

首先，我们先创建出一个HibernatePersonDao的实例，然后注入一个HibernateSessionFactory❶。代码中使用的getSessionFactory方法目前还不存在，我们只是在进行意图编程。

下一步是代码清单6-14中测试的“执行”部分。我们创建了一个瞬态Person对象，然后让HibernatePersonDao保存这个对象。接着我们验证保存过的Person对象会有个ID标识❷，通过此ID可以找到保存过的Person对象❸。

 在测试中重用Session对象要谨慎

 在代码清单6-14中，我们新创建了一个Session对象，用于验证Person对象确实被持久化了。当然，可以不创建新Session对象，而是从SessionFactory中获取当前Session，不过使用新的Session对象会更保险。当涉及事务时，使用同一个Session进行测试可能会漏掉一些问题，因为在同一个Session中，无论事务是否提交过，所有的更改都将“生效”。

要验证DAO是否能用Hibernate API持久化Person对象，这个测试足矣。下一步来试着实现getSessionFactory方法。

	为测试配置Hibernate

目前的问题是我们有两套Hibernate配置——一套用于产品环境，另一套用于集成测试环境。我们需要透明地导入测试环境的配置，并且使两套配置不存在多余的重复。

目前我使用这个办法：在类路径中的hibernate.properties配置文件中维护产品环境配置，然后把任何有差异的配置项都放在测试专用的hibernate.test.properties文件中。当两个配置文件中存在重复时，用测试环境的配置覆盖产品环境的配置。这可以帮我们降低“在测试环境部署应用程序后才发现配置问题”的风险——大部分Hibernate相关的数据访问的集成问题，都能够在开发人员环境中发现并解决。

下面，我们来试着实现代码清单6-14中的getSessionFactory方法，以及刚才提到的配置管理方法。

要获得一个SessionFactory，则先要获得一个能够创建SessionFactory的Configuration对象。在代码清单6-15中，我们首先根据类路径中的产品环境配置文件hibernate.properties，创建出一个Configuration对象❶，然后把产品环境配置对象传给另一个方法，在产品配置的基础上加载测试配置❷，覆盖任何已有的配置❸。

 代码清单6-15　为测试配置SessionFactory

public class HibernatePersonDaoIntegrationTest {
　
 ...
　
 private SessionFactory getSessionFactory() throws Exception {
 return createConfiguration().buildSessionFactory();
 }
　
 private Configuration createConfiguration() throws Exception {
 Configuration cfg = loadProductionConfiguration(); // ❶从类路径中载入产品确认消息
 loadTestConfigInto(cfg, "/hibernate.test.properties"); // ❷从文件中载入测试确认消息
 return cfg;
 }
　
 private Configuration loadProductionConfiguration() {
 return new Configuration().configure(); // ❶从类路径中载入产品确认消息
 }
　
 private void loadTestConfigInto(Configuration cfg, String path)
 throws Exception {
 Properties properties = loadPropertiesFrom(path); // ❷从文件中载入测试确认消息
 Enumeration keys = properties.keys();
 while (keys.hasMoreElements()) {
 String key = (String) keys.nextElement();
 String value = properties.getProperty(key);
 cfg.setProperty(key, value); // ❸覆盖单个属性
 }
 }
　
 private Properties loadPropertiesFrom(String path)
 throws Exception {
 InputStream stream = getClass().getResourceAsStream(path); // ❷从文件中载入测试确认消息
 assertNotNull("Resource not found: " + path, stream);
 Properties props = new Properties();
 props.load(stream);
 stream.close();
 return props;
 }
}

为了让Hibernate连接到测试数据库上，我们写了不少代码，不过没关系，这些代码只用写一次。说到连接数据库，现在应该为Hibernate指定测试配置了，否则集成测试可能会去访问缓慢的远程数据库，或者（倒吸一口冷气）产品数据库。

	配置内存数据库HSQLDB

接下来的问题是，数据库连接的哪些属性应当从测试环境配置中读取？目前，我们期望集成测试在内存数据库HSQLDB上运行。假设HSQLDB不是产品数据库，那么我们至少需要覆盖SQL dialect以及其他以hibernate.connection为前缀的属性。代码清单6-16列举了一部分相关属性。

 代码清单6-16　内存数据库HSQLDB的Hibenate配置

hibernate.dialect=org.hibernate.dialect.HSQLDialect
hibernate.connection.driver_class=org.hsqldb.jdbcDriver
hibernate.connection.url=jdbc:hsqldb:mem:testdb
hibernate.connection.username=sa
hibernate.connection.password=
hibernate.show_sql=true
hibernate.hbm2ddl.auto=create-drop

代码清单6-16中的配置与产品环境的配置并没有太大区别——我们只需要告诉Hibernate应该针对哪种数据库产生SQL语句及数据库的位置（JDBC URL），使用哪个JDBC驱动连接数据库，以及连接所使用的账号。最后一个配置项hibernate.show_sql并不是必需的，不过在测试时会用得上。打开show_sql功能后Hibernate会输出生成的SQL语句，调错时很有用。

hibernate.connection.url的值jdbc:hsqldb:mem:testdb，是指我们期望连接到内存数据库系统HSQLDB中的testdb库。如果这个数据库还不存在，HSQLDB会自动创建。因为我们会从无到有地创建数据库，所以数据库中不会有任何表。在数据库创建完成后，我们必须初始化数据库模式。

最后把create-drop赋给hibernate.hbm2ddl.auto属性后，Hibernate会在SessionFactory创建和关闭时，自动创建和删除数据库。不过这不是创建数据库的唯一方法，下面来看看还有哪些选择。

6.4.2　创建数据库模式

数据库模式也是源代码的一部分。所以数据库模式也应当与系统其他部分源代码一样由版本控制系统保存。

	SQL脚本

要解决这个问题，传统的做法是把创建模式的数据定义语言（data definition language，DDL）语句保存在一个（或几个）SQL脚本文件中。这样做有两个好处：容易进行版本控制并且容易维护（因为数据库管理员与开发人员都熟悉SQL语句）。

使用外部的SQL语句也有两个缺点：首先，因为需要给集成测试准备模式，所以需要在Java代码中执行这些SQL语句；其次，集成测试中使用的数据库有可能和生产环境的不一样，所以DDL语句也需要同时兼容两个数据库环境，否则就要维护两套不同的模式定义文件了，这简直是自找麻烦。

第一个问题很容易解决，只要写个小工具，从文件中读取出SQL语句，然后传给JDBC执行就可以了。第二个问题有些棘手，不过Hibernate可以帮忙。

	让Hibernate解决所有问题

Hibernate的用户们走运了，因为Hibernate可以在创建SessionFactory的同时把模式导入到数据库中。映射文件中包含所有必需信息，开发人员只需要在集成测试配置中添加属性hibernate.hbm2ddl.auto=create-drop。不过由映射文件产生的模式和手工创建的并不完全一样，这点并不很理想。

例如，Hibernate通常会为java.lang.String类型的字段创建VARCHAR(255)列，而我们可能会需要一个不定长的数据类型，不局限于255个字符长度。在过去，这可能会带来些麻烦，因为有些数据库会按照列长的限制直接截断数据。通过在映射文件中定义列的sql-type属性，我们可以改变默认行为。这不一定会给你带来问题，因为测试数据库和产品数据库也许会支持同样的数据类型。

在开始集成测试周期之前，我想先介绍一下增量式DDL脚本。

	增量式DDL脚本

如果你曾经见到过产品部署过程出现问题，那么你肯定会见到数据库回滚操作。回滚应用程序代码相对简单——只需要拿走老版本装上新版本就可以了。不过，数据库就不一样了。数据库里包含的不仅仅是模式，还有数据。数据会使情况变得很复杂，因为我们不能直接把数据丢掉，重新创建模式。所以就要使用增量式DDL了。

增量式DDL基本理念是：许多细小的步骤可以创建出大的模式。一次只添加一个列或者一张表，每个步骤都可以回滚。如果我们把创建数据库模式的步骤分解成一系列顺序执行的小脚本，每个脚本都是在当前模式上“打补丁”，那么我们就可以轻易地重新创建出任何版本的模式，而且还可以从新版本恢复到老版本，同时不会丢失任何数据！

Ruby on Rails1是我见到的第一个支持增量式DDL脚本的框架。不过本书主要内容是Java开发，所以不会讨论太多Rails框架的特性。Java世界中的开源项目dbdeploy2也实现了类似的功能。

1 http://wiki.rubyonrails.com/rails/pages/UnderstandingMigrations

2 http://dbdeploy.com/

Dbdeploy工具用于维护数据库的变更，这个工具可以从一堆小的SQL脚本中生成完整的SQL脚本。每个补丁文件都会有一个数字前缀，表示其版本。参见图6-6中delta script的目录结构。

在图6-6的例子中，共有4个delta script，dbdeploy会按照脚本前缀依次执行这些脚本。每个脚本都是普通的SQL语句，也可以包含一段撤销修改的语句，dbdeploy工具在恢复数据库旧版本时，会执行撤销修改的SQL语句。代码清单6-17为00002_create_order_items_table.sql中的SQL语句。

图6-6　包含delta change脚本的目录示例，这些脚本用于增量地创建数据库。Src/db/deltas目录中的四个脚本将会按照前缀数字顺序执行

 代码清单6-17　带有用于回滚的@UNDO-block的delta脚本示例

CREATE TABLE ORDER_ITEMS (
 ID INTEGER NOT NULL,
 ORDER_ID INTEGER NOT NULL,
 ITEM_DESCRIPTION VARCHAR(100)
)
;
ALTER TABLE ORDER_ITEMS
 ADD (CONSTRAINT PK_ORDER_ITEMS)
 PRIMARY KEY (ID)
;
ALTER TABLE ORDER_ITEMS
 ADD (CONSTRAINT FK_ORDER_ITEMS_ORDER)
 FOREIGN KEY (ORDER_ID) REFERENCES ORDER(ID)
;
　
--//@UNDO // ❶此行后都是回滚
ALTER TABLE ORDER_ITEMS
 DROP CONSTRAINT FK_ORDERS_ORDER_ITEMS
;
DROP TABLE ORDER_ITEMS
;

dbdeploy工具会读取代码清单6-17中的SQL语句，直到遇到标注为❶的字符串--//@UNDO。这个字符串表明“前面的内容用来更新模式，后面的内容用来回滚修改”。

然后，可以配置dbdeploy，让其指向一个数据库和一系列delta script，然后dbdeploy会为数据库产生相应的migration script。不过dbdeploy怎么知道哪个脚本已经执行过了？为了提供这个功能，我们需要添加一张表，专门用于保存数据库的版本号。这张表需要手工创建，不过dbdeploy可以帮我们完成这项工作，所以只要在创建数据库时执行一次就可以了。

Dbdeploy这样的增量式DDL脚本解决方案肯定值得考虑。虽然它只不过是个小工具，不过所带来的好处是毋庸置疑的。但是，为了完成本章的目标（特别是完成了一半的集成测试），我们还是会采用Hibernate，让其在幕后删除和创建数据库模式。现在我们回到集成测试上吧。

6.4.3　实现产品代码

我们先来回顾一下代码清单6-14中的测试所验证的内容。在测试中，我们期望HibernatePersonDao类可以保存Person对象，用SessionFactory把对象持久化到数据库中。代码清单6-18中的代码可以完整实现这个功能。

 代码清单6-18　第一个集成测试的轮廓

public class HibernatePersonDao {

 private SessionFactory sessionFactory; // ❶依靠SessionFactory

 public void setSessionFactory(SessionFactory sessionFactory) {
 this.sessionFactory = sessionFactory; // ❶依靠SessionFactory
 }

 public void save(Person person) {
 Session session = sessionFactory.getCurrentSession(); // ❷如可用，获取现存会话
 Transaction tx = session.beginTransaction(); /*❸（以下3行）用事务持久化Person*/
 session.save(person);
 tx.commit();
 }
}

我们的DAO实现只需要把传入的SessionFactory实例❶保存到一个private字段中，在调用save方法时，使用其提供的持久化功能保存对象。在save方法中，我们❷从SessionFactory中获取了当前Session（如果当前Session还不存在，会创建新的Session），❸创建新的事务，调用Session对象的save(person)方法，然后提交事务。

说到事务，下面将讨论事务夹具及其优点。

6.4.4　用事务夹具保持数据清洁

数据库读操作的测试很简单：先在数据库中保存些数据，然后读操作会读取数据（或者数据的子集），返回相应的对象。而写操作会改变数据库的状态，因此需要验证数据的变化与期望的一致。这类测试有些麻烦，因为在测试中数据会被修改，下一个测试使用的测试数据已经不完全一样了。如果不能保证测试之间数据独立，连读操作的测试都会受到影响。那么，应该如何保持测试前后数据库状态不会发生改变呢？

我们当然可以在每个测试的tearDown方法中实现撤销操作，撤销集成测试对数据的所有改动。不过撤销逻辑很容易变得过于复杂，所以需要用其他方法解决这个问题。或许事务夹具是最好的选择。

事务夹具首先是个夹具，能够提供测试方法用到的数据。另外，它还能提供回滚功能，在测试结束后自动撤销所有修改。我们会用持久化框架和数据库提供的事务机制实现这项功能。我们可以在setUp方法中创建一个事务，而在tearDown方法中回滚事务。代码清单6-19为Hibernate的实现。

 代码清单6-19　用事务夹具回滚集成测试中的数据修改

public class HibernatePersonDaoIntegrationTest extends
 HibernateIntegrationTestCase {

 private SessionFactory sf;
 private Transaction tx;
 ...

 @Before
 public void setUp() throws Exception {
 sf = getSessionFactory();
 ...
 tx = sf.getCurrentSession().beginTransaction(); /*❶（以下2行）在Psetup中开始执行事物*/
 tx.begin();
 }
 @After
 public void tearDown() {
 tx.rollback(); // ❷在teardown方法中回滚
 }

 ...
}

在每个测试开始时，setUp方法会为当前Session❶创建一个Transaction对象。从这点开始，所有的使用Session对象的数据库操作都属于数据库事务的一部分，在tearDown方法中❷调用Transaction的rollback方法时，所有操作都会撤销。

相对每次都填充数据库，使用事务夹具的优势在于提高执行速度。从外部文件导入数据会耗费大量时间，就算数据量很小，所有测试的总执行时间也不少。如果使用事务夹具，就可以只在测试运行前填充一次数据库，每个测试执行完后都会回滚数据修改即可。

无法测试事务行为是事务夹具的唯一缺点。因为如果在测试中提交了事务，那么tearDown方法中的回滚操作将无法撤销修改。

如果事务夹具能保证数据库的状态不会被测试修改，那么如何往数据库中填充测试数据呢？下面就来讨论这个问题。

6.5　为集成测试填充数据
假设我们在为findByLastname等读操作写集成测试。由于测试中将使用真实数据，所以需要往数据库中填充测试数据。我们可以用一些很经典但又相对原始的方法填充数据，例如在测试前运行INSERT语句。虽然这种方法可行，但是SQL脚本并不算用户友好，而且可移植性也不强。

因此，我们希望能有其他的替代方案。幸运的是，替代方案有许多，例如Hibernate和DbUnit1。下面就来仔细研究这两种方案。

1 http://dbunit.sf.net

6.5.1　用Hibernate填充对象

如果我们在使用Hibernate ORM框架，那么可以利用Hibernate的持久化功能来填充数据库。从很多方面来讲，填充数据的语言与开发语言一致会带来很多好处。具体示例请见代码清单6-20。

 代码清单6-20　用Hibernate API填充数据的集成测试

@Test
public void testFindingAllSmiths() throws Exception {
 List<Person> theSmiths = new ArrayList<Person>(); /*❶（以下6行）创建对象*/
 theSmiths.add(new Person("Alice", "Smith"));
 theSmiths.add(new Person("Billy", "Smith"));

 List<Person> allPeople = new ArrayList<Person>();
 allPeople.addAll(theSmiths);
 allPeople.add(new Person("John", "Doe"));

 persist(allPeople); // ❷用HibernateAPI持久化对象
 assertEquals(theSmiths, dao.findByLastname("Smith"));
}

private void persist(List<? extends Object> objects) { /*❷（以下7行）用HibernateAPI持久化对象*/
 Session s = sf.getCurrentSession();
 for (Object object : objects) {
 s.save(object);
 }
 s.flush();
}

为了测试HibernatePersonDao的findByLastname方法，我们❶创建了很多Person对象，接着❷用Hibernate将其持久化到数据库中。然后刷新Session，使保存操作立即执行。最后用DAO查找数据库中所有姓为Smith的Person对象。

请注意，在测试中，数据准备部分和测试执行部分紧挨在一起。与此相对，我们也可以在测试中直接调用查找方法，期望返回一个包含Alice Smith和Billy Smith的列表。为什么会有这两个对象呢？因为这个测试的外部SQL文件中包含这两个Smith，测试运行时已经写到数据库中去了。由此可以看出，如果测试数据和测试逻辑分离了，测试失败时会很难找出原因。

 注解　在代码清单6-20中，尽管我们在测试方法中进行数据填充，不过使用Hibnerate API，在套件或测试类层面仅初始化一次数据仍旧可行。

尽管使用ORM工具有许多优势，不过用ORM框架的API来填充测试数据也有一定缺陷。例如，若完全依赖ORM或持久化框架，可能会漏掉一些问题，而用纯SQL或其他低级格式（lower-level format）填充数据时，这些问题很快就能发现。而且，并不是所有项目都用Hibernate等ORM工具，因此SQL脚本之外的解决方法也值得研究。另外，还有一个潜在的问题：测试驱动时DAO可能尚不存在，所以根本没法填充数据2！

2 这里是指，要测试驱动出DAO，需要先填充测试数据，而填充测试数据，又需要使用DAO。——译者注

许多年来，有很多项目一直在使用DbUnit来填充数据。

6.5.2　用DbUnit填充数据

DbUnit是一种用于数据库测试的功能齐全的工具。它可以用多种格式的数据文件填充数据库（其中，两种XML格式的变体应用最为广泛），也可以把数据库内容导入到文件中。此外，DbUnit可以比较两个数据集（例如，外部数据文件和当前数据库内容）间的差别。我们并不会深入讨论DbUnit（此项目的网站上有详细的文档及大量示例），不过可以先来了解如何从外部文件导入测试数据。

	初始状态

DbUnit工具提供了DatabaseTestCase基类。这个基类可以用于向目标数据库填入数据。开发人员需要向基类提供数据库连接，另外需要通过一些抽象方法提供数据集。

不过在实际应用中，我们通常会为DbUnit的测试创建自己的虚基类，把数据库连接及加载数据的细节集中在一处，而不是在每个测试中重复（见代码清单6-21）。

 代码清单6-21　DbUnit集成测试的虚基类

import java.io.InputStream;
import java.sql.*;
import org.dbunit.database.*;
import org.dbunit.DatabaseTestCase;
import org.dbunit.dataset.IDataSet;
import org.dbunit.dataset.xml.FlatXmlDataSet;
import org.junit.Before;
　
/**
 * Abstract base class for integration tests using DbUnit for
 * populating the database to a known state before each test run.
 */
public abstract class DbUnitIntegrationTestCase extends
 DatabaseTestCase {
　
 protected Connection getJdbcConnection() throws SQLException { /*❶（以下3行）创建JDBC连接*/
 // obtain a JDBC connection to the database
 }
　
 @Override
 protected IDatabaseConnection getConnection() throws /*❷（以下4行）为DbUnit包装连接*/
 Exception {
 return new DatabaseConnection(getJdbcConnection());
 }
　
 @Override
 protected IDataSet getDataSet() throws Exception {
 String resource = getClass().getSimpleName() + /*❸（以下4行）从磁盘获取数据集*/
 ".initial.xml";
 InputStream stream =
 getClass().getResourceAsStream(resource);
 assertNotNull("Resource " + resource + " not found.",
 stream);
 return new FlatXmlDataSet(stream); // ❹给DbUnit提供数据
 }
}

要使用DatabaseTestCase基类，开发人员需要覆盖两个虚方法。在代码清单6-21中，我们❶首先创建了一个JDBC连接（使用java.sql.DriverManager等），然后用DbUnit特定的DatabaseConnection对象❷包装连接对象。另外，我们还需要给DbUnit提供数据集以填充数据库。数据集可以❸从保存在类路径中的XML文件里读取，然后以纯 XML数据格式进行解析❹。

这样，测试类就可以直接继承DbUnitIntegrationTestCase基类，新建一个XML文件，写入测试所需的数据，然后使用与DbUnit同一个数据库连接执行测试代码（见代码清单6-22）。

 代码清单6-22　继承代码清单6-21中虚基类的子类

import java.sql.*
import java.util.*;
import org.apache.commons.dbcp.BasicDataSource;
import org.junit.*;
　
public class PersonDaoDbunitIntegrationTest
 extends DbUnitIntegrationTestCase {
　
 private List<Person> expectedList; // ❷创建想要的结果
　
 @Before
 @Override
 public void setUp() throws Exception {
 super.setUp(); // ❶调用父类，写入数据库
 expectedList = new ArrayList<Person>(); /*❷（以下4行）创建想要的结果*/
 expectedList.add(new Person("Al", "Freeman"));
 expectedList.add(new Person("Bill", "Brewster"));
 expectedList.add(new Person("Juan", "Alvarez"));
 }
　
 @Test
 public void testFindAll() throws Exception {
 JdbcTemplatePersonDao dao = new JdbcTemplatePersonDao();
 dao.setDataSource(new BasicDataSource() { /*❸（以下6行）确认测试的代码*/
 @Override
 public Connection getConnection() throws SQLException {
 return getJdbcConnection();
 }
 });
 assertEquals(expectedList, dao.findAll()); // ❹验证实际结果是否与期望的一致
 }
}

首先，❶DbUnit从一个与测试类同名的XML文件中读出数据，写入数据库。然后我们❷创建出了一个名为expectedList的Person对象列表，接着❸让我们的数据访问代码访问同一个数据库，最后❹验证findAll方法返回的列表与期望的一致。在这里，我们假设DbUnit会向数据库写入Al Freeman、Bill Brewster和Juan Alvarez几条数据，只要在类路径中放入了PersonDaoDbUnitIntegrationTest.initial.xml，这个假设必定成立。下面来看看数据文件中包括什么吧。

	定义数据集

代码清单6-23演示了如何用DbUnit的纯 XML格式向employees表中填充Al、Bill和Juan等3个员工信息，向salaries表填充他们的薪水信息。

 代码清单6-23　纯XML格式的样本数据

<?xml version='1.0' encoding='UTF-8'?>
<dataset>
 <employees employee_uid="1" start_date="2005-01-01"
 ssn="000-29-2030"
 first_name="Al" last_name="Freeman" />
 <employees employee_uid='2' start_date="2005-04-04"
 ssn="000-90-0000"
 first_name="Bill" last_name="Brewster" />
 <employees employee_uid='3' start_date="2006-06-03"
 ssn="000-67-0000"
 first_name="Juan" last_name="Alvarez" />
 <salaries employee_uid="1" salary="45000" />
 <salaries employee_uid="2" salary="50000" />
 <salaries employee_uid="3" salary="47000" />
</dataset>

在纯XML中，每行数据都是dataset根元素的直接子元素。元素的名称就是对应的数据库表名，元素的每个属性都是一个列名—列值对。通过读取JDBC中提供的数据类型信息，DbUnit可以把简单类型转化成正确类型然后写入数据库。例如，若列类型是DATE，那么start_data列的属性值会被正确地解析成java.sql.Date对象。

参照代码清单6-23中的格式把测试数据写成XML，可以使维护工作变得更简单，因为在改变数据库时不需要改动测试数据。此外，XML格式比SQL语句更易读。以外部文件定义测试数据的方式（如代码清单6-22和代码清单6-23所示）的主要缺点在于，测试数据会在多处重复。使用DbUnit提供的数据集断言，可以免去一些测试写操作时遇到的麻烦。下面就来了解一下这项功能。

	DbUnit与数据集

我们可以有效地利用DbUnit的功能，把数据库的内容导出为一个IDataSet对象，便于对比两个数据集。比起在XML文档和Java源代码之间来回切换，这种方式更加自然，因为数据定义的格式与验证时作对比的格式一致。

要做到这点，需要3个步骤。第一步是导出数据库的当前内容。这一步很简单，只要从DbUnit中拿到填入数据时使用的数据库连接，然后用其创建IDataSet对象即可。

IDataSet fullDatabase = getConnection().createDataSet();
String[] tables = { "apples", "oranges" };
IDataSet justSomeTables = getConnection().createDataSet(tables);

在第二步中，我们需要获取另一个IDataSet对象来做对比。做一些小的重构后，我们可以重用基类中的代码。

@Override
protected IDataSet getDataSet() throws Exception {
 return getDataSet("initial");
}
　
protected IDataSet getDataSet(String name) throws Exception {
 String resource = getClass().getSimpleName() + "." +
 name + ".xml";
 InputStream stream = getClass().getResourceAsStream(resource);
 assertNotNull("Resource " + resource + " not found.", stream);
 return new FlatXmlDataSet(stream);
}

把数据集文件的逻辑名称提取成函数参数后，我们可以在测试中使用重载后的getDataSet(String)方法从磁盘上任意文件中读取数据，将读取的数据转化成IDataSet对象。

现在我们已经可以得到两个数据集对象，不过要进行对比，还需要有对比方法。DbUnit提供了很多方便的断言类，类中定义了如下两种验证方法：

void assertEquals(IDataSet expected, IDataSet actual);
void assertEquals(ITable expected, ITable actual);

前一种方法会对比两个数据集，而后一种会对比两张表。如果只对某一个表的内容感兴趣，那么可以使用后一种方法。通过对比单张表，我们可以只准备感兴趣的那一部分测试数据。要把数据对比工作限制于相关的表，可以让DbUnit只导出相关表而非所有表的数据。

有了这两种断言方法以及读取数据库和文件内容的方法，我们就可以写出代码清单6-24中的测试了。

 代码清单6-24　用DbUnit对比数据集

@Test
public void testSavePerson() throws Exception {
 JdbcTemplatePersonDao dao = new JdbcTemplatePersonDao();
 dao.setDataSource(new BasicDataSource() {
 @Override
 public Connection getConnection() throws SQLException {
 return getJdbcConnection();
 }
 });
 Person person = new Person("John", "Doe");
 dao.save(person);
　
 IDataSet expectedData = getDataSet("afterSavePerson"); // ❶从磁盘读取期望的后述状态
 String[] tables = new String[] { "employee", "salary" }; /*❷（以下2行）从数据库读取状态*/
 IDataSet actualData = getConnection().createDataSet(tables);
 Assertion.assertEquals(expectedData, actualData); // ❸要求DbUnit处理麻烦问题
}

执行完数据访问代码后，我们❶从文件中读取出employee及salary表的期望数据，然后❷让DbUnit从数据库中读取employee及salary表的当前内容，最后❸对比两个数据集。很简单吧？

DbUnit的相关知识目前已经足够了。有了这个工具，开发工作会变得更轻松。不过，是否使用DbUnit，当然还是由你自己决定。目前为止，我们已经见到了许多数据访问对象的单元测试和集成测试技术，不过还没有讨论过如何在开发过程中使用这些技术。在这方面，一个主要的问题是，我们应该用单元测试还是集成测试来驱动数据访问代码的开发？

6.6　使用单元测试还是集成测试
在传统软件开发过程中，我们需要先进行单元测试，然后是集成测试，最后是系统级测试。不过TDD不同于传统开发过程，一开始并没有任何可以测试的代码，直到完成第一个测试后。单元测试使用测试替身，而集成测试会真实地访问数据库，从编写产品代码的角度来看，这两种测试的差别并不大。不过，这两种测试的用途不同，使用这两种测试做开发时的节奏也有所不同。

下面我们先来讨论，使用集成测试时TDD周期会是什么样子。然后再来讨论，如何在整个开发过程中混合使用集成测试和单元测试驱动开发工作。

6.6.1　在TDD周期中使用集成测试

也许你已经注意到了，做集成测试前需要先做些准备工作，构建一定基础设施。这些准备工作会花费一定时间，如果第一次使用相关工具，那么需要的时间会更长。一旦初步构建完成，这些基础设施会通过不断的重构而逐渐演化和改进。

用集成测试进行TDD，和基于单元测试的TDD并无区别，只是速度慢一些。不过若集成测试中使用了DbUnit，那么会更有趣。只要集成测试中有了使用DbUnit的基础设施，那么TDD周期基本上会遵循以下过程。

	添加一个测试方法。

	运行测试，会提示缺少数据文件。

	编辑数据文件。

	运行测试，会提示缺少表或者列，等等。

	改变数据库模式。

	运行测试，会提示功能尚未完成。

	实现功能。

	运行测试，测试通过。

这个过程和使用单元测试的TDD周期区别不大，不过每个步骤所花费的时间会更长，所以TDD周期也会变得更长。另外，值得注意的是，因为可能需要改变数据库模式，我们可能需要对代码及数据库进行重构1，然后才能添加新功能。

1 Scott Ambler与Pramodkumar Sadalage合著的Refactoring Databases是介绍演化数据库模式的主要材料。

根据我的经验，只要合理使用工具，是可以用集成测试驱动数据访问代码的。这里提到的工具是指：一个能实现所需基础设施的持久化框架、一个能方便添加新测试的框架、还有一个运行速度够快的数据库。不过这并不是指我们只能用一种方法解决问题。

6.6.2　两全其美

前面曾经提到，集成测试可以验证数据库访问代码是否能与数据库正常协作。如果使用单元测试，那么只能间接地验证代码。测试的正确性取决于开发人员对持久化框架查询语言的理解程度以及对框架API的熟练程度，等等。

集成测试最大的问题是执行速度缓慢。即使只运行少量测试，速度上的劣势也很明显。如果执行所有测试，那么可能会用去10分钟或者更多的时间，这样，用测试对代码进行全面地健康检查前就提交代码的可能性会逐渐增加。

无法模拟特定情形是集成测试的另一个缺点。相比之下，如果用单元测试，那么准备数据会更容易。例如，要模拟在特定时刻数据库连接突然失败，集成测试就力不从心了，而测试替身可以很容易模拟此类情形。此外，比起填充数据库，再让数据访问对象读取数据库再返回领域对象，让测试替身返回一些领域对象要容易得多。

了解两种方式的利弊后，没有必要再作出什么非此即彼的选择了。我们需要合理地利用这两种方法，使其各自的优点都得以发挥。在测试驱动数据访问代码时，虽然有必要统一测试的类型，不过根据不同情况应用不同类型的的测试也是合理的。

在总结本章内容之前，我们来简单介绍一下尚未提及的重要数据访问方式——文件系统。

6.7　文件系统访问
还记得6.2节中Michael Feathers的关于单元测试的定义吗？此定义提到：单元测试不会访问文件系统；单元测试之间能够并行运行；运行单元测试前不需要设置环境。给单元测试定下这么多规则是为了提高执行速度和可维护性。切记，单元测试的执行速度要快，可维护性要好。那么，单元测试中对文件系统的访问该如何处理？

简言之，我们需要尽量避免访问文件系统，而是用java.io.Writer及java.io.Reader取代。毕竟大部分时间我们感兴趣的是文件内容，而不是文件本身，所以streams完全可以胜任。

不过还是那个问题，如何测试包装File API的那部分代码呢？在本节中，我们将会进行详细讲解。先从我过去的项目中遇到的一个问题开始吧。

6.7.1　项目中实际遇到的一个问题

在我最近的项目中有个需求：在后台通过网络从服务器上下载更新。后台下载模块应该能把下载的更新保存在临时文件中，然后进行完整性检查，最后会覆盖老版本所有的包。我们需要引入ContentStorage接口，这样ContentDownload就可以使用这个接口写文件或者在系统的内容目录结构中移动文件了。

在单元测试中使用伪ContentStorage可以避免访问文件系统，也不用配置存储路径，同时也不用在测试执行后清理遗留文件。只需要在一小部分测试里使用ContentStorage的真实实现即可。这有效地减少了进行I/O操作的缓慢测试的数量，也不必在每个测试后都清理文件系统中留下的垃圾文件了。

意识到可以改造文件访问操作，使其更加测试友好，是提高可测试性的第一步。在下一节中，我们将会讲到提高文件访问代码可测试性的很多实用技巧。

6.7.2　提高文件访问可测试性的实践

遵循好的设计原则会使设计的可测试性更佳。不过涉及读写文件等简单操作时，所有的设计理念仿佛都从脑海里消失了。出于某种原因，我们Java开发人员在使用java.io.File*API时，通常都不会多加思考，在代码中四处使用java.io.File*API。好吧，也许只有我才这样，不过我更愿意相信不止我一个人有这种习惯。下面要介绍的设计技巧能够简化文件访问操作，使文件访问相关的测试驱动工作尽可能简单。

	用接口隔离文件访问

虽然Java文件API是好东西，不过在代码中四处调用文件API就不好了。当我们需要在遗留代码基础上添加或者修改功能，且此功能会进行文件访问时，问题就会浮现。如果你和我一样走运，你可能会需要在测试中准备一整套目录结构，以执行需要改动的代码。用接口封装文件访问，通常能减少测试中的初始化工作。

	使用流（stream）而非文件

假设要对比两个文件，那么实现代码中会很自然地引用两个java.io.File对象。因为要对比的是两个文件，所以这表面看起来很合理。不过，实际上，这样做并不那么合理。因为对比操作并不关心什么是文件，而只关心要对比的内容。如果对比代码需要使用FileInputStream来读取文件内容，那么File对象必须指向文件系统中真实的文件。这样，比起直接读取内容，读取文件的方案需要写更多代码。

使用流对象，而非文件句柄能很好地解决这个问题。

	使用自定义的文件对象

大部分情况下，我们都可以传递流对象，而不是文件对象。而有时候我们不仅需要文件内容，还需要其他信息，例如文件的位置、大小等。不过就算遇到这种情况，也不能直接传递文件对象，因为这么做还会带来可测试性问题。

这时候，可以引入自定义的文件接口。这个接口可以是java.io.File API的一个封装，提供对文件元数据（例如路径等）及文件内容的访问。有了这个接口，文件访问代码会更容易测试，因为完全可以使用模拟文件，而不用把临时文件和目录弄得乱七八糟。

Jakarta Commons VFS1（virtual file system，虚拟文件系统）项目封装了Java文件系统API。有了这套类库，我们就可以在测试中使用纯虚拟的内存文件系统，而在产品环境中使用真实的文件系统了。

1 http://jakarta.apache.org/commons/vfs/

	使用专用的临时文件夹

如果需要在文件系统中创建真实的物理文件，那么则应该使用一个专用的临时文件夹来存放所有的输出文件及动态产生的输入文件。把所有的测试文件都放在同一个文件夹内，在测试清理步骤中，只要删除整个文件夹就可以了。

	测试前清理而非测试后

说到数据清理，比起在测试完成后清理，有时候在测试前清理更加合理。因为测试中可能产生大量数据，而要验证如此多的数据的正确性，有时需要用一些工具（例如diff工具）进行手动对比。所以，不能让测试后的清理动作毁掉所有数据证据。

虽然上面介绍的的这些技巧不是银弹，不过确实能简化文件访问相关功能的开发工作。下面我们来总结本章内容，然后继续其他有趣的话题吧。

6.8　小结
在本章中，我们了解了如何测试驱动数据访问代码。这工作比想象的要容易得多。我们从两个角度阐述了这个问题——分别使用了单元测试和集成测试驱动产品代码的开发。

首先，我们讨论了为何数据访问代码与普通的应用程序代码或业务逻辑代码间存在一定差别，为何其会跨越许多层。然后我们了解了DAO模式，以及如何用这种模式解决代码臃肿的现实问题。

然后，我们尝试用3种不同的持久化技术实现一个简单的DAO类。这3种技术分别为：纯JDBC API、Spring框架提供的JdbcTemplate以及Hibernate API。因为使用3种技术实现同一种功能，我们很容易看出框架的可测试性风格对TDD过程的影响。

在学会用单元测试驱动数据访问代码后，我们转向了另一种方式：直接连接到HSQLDB内存数据库进行集成测试。我们讨论了在集成测试中使用轻量级数据库可能带来的问题，也讨论了在版本控制系统中维护各项配置的必要性。

我们学习了如何搭建集成测试的基础架构，好让集成测试编写工作变得飞快，讨论了用SQL脚本及Hibernate API来创建数据库模式，亦讨论了如何用事务夹具清理测试数据。我们也介绍了用DbUnit填充数据库，以及用外部XML数据文件中的内容进行结果验证。

在尝试测试驱动数据访问代码的两种不同方法后，我们发现两种方法各自的优势，并决定针对具体情况而使用不同的方法。

在本章结束时，我们简要讨论了文件访问相关内容，以及如何设计代码以简化文件系统的相关操作。

在下一章中，我们将会集中讨论底层平台，也会涉及测试驱动过程中可能遇到的一些不可预测的因素，例如事件相关的功能及并行编程（concurrent programming）。

第7章　测试驱动不可预测功能

 马这种动物不可预测，但在预知范围内。

 ——洛瑞塔·盖奇，科罗拉多州立大学兽医学院年龄最大的学生

迄今为止，我们已经接触到了数据访问代码、Web组件和普通业务逻辑的测试驱动方法。这些方法基本上与底层平台关系不大，而且执行结果完全可以预测。但并不是所有的代码都像这样。在本章中，我们将会专门介绍一些行为不可预测的功能的测试驱动方法，这些功能包括：

	时间相关功能

	多线程编程

我们会先从相对简单的时间相关功能开始介绍，然后讨论多线程并发编程给测试以及TDD带来的挑战。在本章的结束部分，我们会学习java.util.concurrent包提供的基本的同步对象。

7.1　测试驱动时间相关功能
许多开发人员在编写测试时都遇到过时间相关的问题，例如代码的执行或输出结果与当前时间相关。时间相关的测试之所以很麻烦，是因为我们没法控制时间。相应的，要解决这个问题，就需要把时间变为可控的。下面，我们来举例说明。

7.1.1　例子：日志和时间戳

假设我们要给Java EE应用服务器添加日志组件。这个组件会接受一个HttpServletRequest对象作为参数，然后产生一条遵循common log格式的日志记录。日志记录类似于：

1.2.3.4 - bob [09/Jun/2006:20:55:59 +0300]
 "GET /page.html HTTP/1.1" 200 5678

或者是：

host - user [timestamp] "request line" status bytes

日志中大部分信息都可以从HttpServletRequest对象中读取出来，除了日志记录的最后两个数字，HTTP状态码和请求内容长度。所以，日志组件除了接受HttpServletRequest对象参数外，还需要这两个数字作为参数。

代码清单7-1中为日志组件简单的测试。

 代码清单7-1　幼稚的日志输出测试

import static org.easymock.EasyMock.*;
import static org.junit.Assert.*;
import javax.servlet.http.HttpServletRequest;
import org.junit.Test;

public class TestHttpRequestLogFormatter {
 @Test
 public void testCommonLogFormat() throws Exception {
 String expected =
 "1.2.3.4 - bob [09/Jun/2006:20:55:59 +0300] "
 + "\"GET /ctx/resource HTTP/1.1\" 200 2326";
 HttpServletRequest request =
 createMock(HttpServletRequest.class);
 expect(request.getRemoteAddr()).andReturn("1.2.3.4");
 expect(request.getRemoteUser()).andReturn("bob");
 expect(request.getMethod()).andReturn("GET");
 expect(request.getRequestURI()).andReturn("/ctx/resource");
 expect(request.getProtocol()).andReturn("HTTP/1.1");
 replay(request);

 HttpRequestLogFormatter formatter =
 new HttpRequestLogFormatter();
 assertEquals(expected, formatter.format(request, 200,
 2326));
 }
}

为什么说这个测试很幼稚呢？这是因为日志信息里面包含了时间戳信息，而时间戳信息并不是参数，因此这个组件会获取系统当前时间然后产生出时间戳。所以，代码清单7-1中的测试基本不可能通过。我们需要想个办法绕过对当前系统时间的依赖。

有个简单的办法解决问题：把时间作为参数传到formatter中。不过这不是长久之计，因为我们总要在某个地方获取系统当前时间。此外，把时间作为参数一级级的在方法间传递，实在不是好的编码风格。所以，还是想想别的办法吧。

另外一个稍微好一些的方法是把时间相关的代码抽取到一个函数中，这样在测试时就可以将其覆盖。针对日志组件，这个方法还不错，不过我们可以考虑得更远一些。

在企业级应用中，日志并不是和时间相关的唯一组件。从整体考虑，我们需要的是一个通用的解决方法，而不是给任何时间相关的类都添加一个方法来封装时间操作，就算这个方法只有一行对System#currentTimeMillis的调用也不行。

我们来想想如何抽象出系统时间，以方便进行虚设。

7.1.2　抽象出系统时间

在Java平台下，获取当前时间有很多种方法。可以通过System#currentTimeMillis，也可以直接创建java.util.Date对象。从java.util.Calendar实例也能够得到当前时间。我们可以试着不直接使用这些方法，而是从自己的SystemTime类中获取当前时间，怎么样？

要重构我们当前的代码，使用系统时间抽象，最简单的办法就是把目前的静态方法调用（System#current-TimeMillis及Calendar#getInstance）和实例创建（new Date()），替换成另一个类的静态方法调用，这个静态方法再去调用如下代码：

long time = SystemTime.asMillis();
Calendar calendar = SystemTime.asCalendar();
Date date = SystemTime.asDate();

为了虚设系统时间，我们需要重新配置SystemTime类获取时间的方式。因为我们需要多个时间源，所以有必要引入TimeSource接口，如下所示：

public interface TimeSource {
 long millis();
}

在默认情况下，SystemTime类使用的TimeSource会直接调用System#currentTime Millis。在单元测试中，我们会换用假的TimeSource实现。下面来看看如何做实现（当然，还有测试）。

代码清单7-2中为一个简单的测试，验证SystemTime会默认返回System#currentTime Millis所返回的值。

 代码清单7-2　验证SystemTime会获取当前真实时间的测试

import static org.junit.Assert.*;
import org.junit.*;

public class TestSystemTimeAbstraction {

 @Test
 public void clockReturnsValidTimeInMilliseconds() throws
 Exception {
 long before = System.currentTimeMillis(); /*（以下4行）用System.currentTime Millis()获取System Time的真实值*/
 long clock = SystemTime.asMillis();
 long after = System.currentTimeMillis();
 assertBetween(before, clock, after);
 }

 private void assertBetween(long before, long actual,
 long after) {
 assertTrue("Should've returned something between " + before
 + " and " + after + " (instead of " + actual + ")",
 before <= actual && actual <= after);
 }
}

代码清单7-2中的测试说，SystemTime类应该直接使用System类获取时间。这正好是代码清单7-3中所实现的。

 代码清单7-3　直接调用System.currentTimeMillis()

public class SystemTime {
 public static long asMillis() {
 return System.currentTimeMillis();
 }
}

刚才只不过迈出了第一步。我们还要为SystemTime类配置其他的TimeSource。该写另一个测试了，见代码清单7-4。

 代码清单7-4　验证SystemTime会使用另外配置的TimeSource

import static org.junit.Assert.*;
import org.junit.*;

public class TestSystemTimeAbstraction {

 @After /*❶（以下4行）每次测试后重置默认的TimeSource*/
 public void resetTimeSource() {
 SystemTime.reset();
 }

 ...

 @Test
 public void clockReturnsFakedTimeInMilliseconds()
 throws Exception {
 final long fakeTime = 123456790L;
 SystemTime.setTimeSource(new TimeSource() { /*❷（以下5行）以固定时间交换TimeSource*/
 public long millis() {
 return fakeTime;
 }
 });
 long clock = SystemTime.asMillis();
 assertEquals("Should return fake time",
 fakeTime, clock); // ❸SystemTime应使用我们的TimeSourcce
 }
}

在代码清单7-4中，我们添加了tearDown方法，用于重置SystemTime类，让其继续使用默认的TimeSource❶。如果不重置，那么下面的测试都会继续使用假的TimeSource，这样可能会导致测试失败。要想控制返回的时间，只需要在代码中注入自定义的TimeSource实现，然后让这个实现返回固定时间就可以了❷。这样，SystemTime就可以返回一个任意时间，而非真实系统时间了❸。

实现见代码清单7-5。

 代码清单7-5　可配置的SystemTime实现

import java.util.Date;

public class SystemTime {

 private static final TimeSource defaultSrc =
 new TimeSource() { /*❶（以下5行）将默认的TimeSource委托给系统时针*/
 public long millis() {
 return System.currentTimeMillis();
 }
 };

 private static TimeSource source = null;

 public static long asMillis() {
 return getTimeSource().millis(); // ❷SystemTime请求有效的TimeSource实现
 }

 public static Date asDate() {
 return new Date(asMillis());
 }

 public static void reset() {
 setTimeSource(null);
 }

 public static void setTimeSource(TimeSource source) {
 SystemTime.source = source;
 }

 private static TimeSource getTimeSource() {
 return (source != null ? source : defaultSrc); // ❸如合适，使用确认的TimeSource
 }
}

SystemTime类在一个final static字段中保存着TimeSource的默认实现❶。当查询当前时间时❷，SystemTime会检查是否有新TimeSource实现，如果没有，才使用默认TimeSource❸。

这是一个简单的Strategy模式应用，若所有的地方都使用SystemTime类而非标准API，就会有很大的灵活性。使用TimeSource接口而不是为SystemTime类设置一个固定时间，或让其返回一个硬编码时间，这在许多复杂的模式中非常有用。比如，我们可以通过配置TimeSource实现单元测试中时间的改变。

现在，让我们回到日志组件的开发工作上来，看看如何用新的SystemTime测试驱动开发。

7.1.3　用虚设的系统时间测试日志输出

有两处代码需要修改：一是产品代码中获取当前时间的方式，二是测试代码中对日志组件输出的验证方式。这两处修改都不麻烦，所以直接改吧。改写后的日志formatter测试如代码清单7-6所示。

 代码清单7-6　使用虚设系统时间的HTTP请求日志formatter的测试

public class TestHttpRequestLogFormatter {

 @After /*❶（以下4行）别有遗漏*/
 public void tearDown() {
 SystemTime.reset();
 }

 @Test
 public void testCommonLogFormat() throws Exception {
 final long time = SystemTime.asMillis(); /*❷（以下6行）确认固定时间*/
 SystemTime.setTimeSource(new TimeSource() {
 public long millis() {
 return time;
 }
 });

 DateFormat dateFormat = /*❸（以下6行）在固定时间基础上构建想要的输出*/
 HttpRequestLogFormatter.dateFormat;
 String timestamp =
 dateFormat.format(SystemTime.asDate());
 String expected = "1.2.3.4 - bob [" + timestamp
 + "] \"GET /ctx/resource HTTP/1.1\" 200 2326";

 HttpServletRequest request =
 createMock(HttpServletRequest.class);
 expect(request.getRemoteAddr()).andReturn("1.2.3.4");
 expect(request.getRemoteUser()).andReturn("bob");
 expect(request.getMethod()).andReturn("GET");
 expect(request.getRequestURI()).andReturn("/ctx/resource");
 expect(request.getProtocol()).andReturn("HTTP/1.1");
 replay(request);

 HttpRequestLogFormatter formatter =
 new HttpRequestLogFormatter();
 assertEquals(expected, formatter.format(request, 200,
 2326));
 }
}

我们要做的第一件事情，依旧是保证测试执行前后系统状态一致❶，例如恢复使用真实的 TimeSource等，因为接下来的测试可能必须使用真实的系统时间。在测试中，我们往SystemTime中注入了一个TimeSource❷，以返回固定时间。这样我们就可以安心地用固定时间产生时间戳了❸。

通过这些小修改，我们的测试在时间方面更健壮了。

	采用抽象系统时间API

在产品代码中使用SystemTime类也很简单，见代码清单7-7。

 代码清单7-7　在HTTP请求的日志formatter中使用SystemTime

import java.text.*;
import javax.servlet.http.HttpServletRequest;
　
public class HttpRequestLogFormatter {
　
 public static DateFormat dateFormat =
 new SimpleDateFormat("dd/MMM/yyyy:HH:mm:ss Z");
　
 public String format(HttpServletRequest request,
 int httpStatusCode,
 int contentLength) {
 StringBuffer line = new StringBuffer();
 line.append(request.getRemoteAddr());
 line.append(" - ");
 line.append(request.getRemoteUser());
 line.append(" [");
　
 line.append(dateFormat.format(SystemTime.asDate())); // ❶从System Time获取当前日期和时间
　
 line.append("] \"").append(request.getMethod());
 line.append(" ").append(request.getRequestURI());
 line.append(" ").append(request.getProtocol());
 line.append("\" ").append(httpStatusCode);
 line.append(" ").append(contentLength);
 return line.toString();
 }
}

我们只要把产品代码的System#currentTimeMillis调用替换成SystemTime#asDate，用它来产生时间戳即可。很简单吧？同样，把遗留代码的调用全部替换成SystemTime也不会太麻烦。

在讨论下个问题之前，也许有必要看看我们的日志formatter测试：在测试中，我们居然引用了产品代码中定义的DataFormat对象！

	测试时间戳格式

代码清单7-6中的测试用了产品代码中定义的DateFormat来得到时间戳的字符串表示。这好像有点儿怪。因为无论这个DateFormat对象采用什么格式，测试都可以通过。

其实我们也可以在测试代码中指定时间戳的精确格式。不过，这会迫使我们第一步就要做出正确的实现。另外，这样还会在产品代码和测试代码间引入重复。我们可以暂且放过这段小的重复代码，也可以将其重构成一个常量，或者添加一个单独的测试验证时间戳的格式（见代码清单7-8）。

 代码清单7-8　确定精确的日期格式

public class TestHttpRequestLogFormatter {
 ...
　
 @Test
 public void testTimestampFormat() throws Exception {
 String date = "\\d{2}/\\w{3}/\\d{4}";
 String time = "\\d{2}:\\d{2}:\\d{2}";
 String timezone = "(-|\\+)\\d{4}";
 String regex = date + ":" + time + " " + timezone;
　
 DateFormat dateFormat = HttpRequestLogFormatter.dateFormat;
 String timestamp = dateFormat.format(new Date());
 assertTrue("DateFormat should be \"dd/mon/yyyy:HH:mm:ss Z\"",
 timestamp.matches(regex));
 }
}

代码清单7-8中用正则表达式验证时间戳的格式。虽然不是精确对比，不过把这种方法和前面的测试结合使用，就可以保证代码正确性了1。

1 不建议使用这种方法。测试应该面向具体，不要通过复杂计算来验证执行结果。如果验证逻辑太复杂，测试失败时，无法判断是测试写错了还是实现代码写错了。——译者注

其实也可以用正则表达式验证整个日志输出。不过这种方法会忽略时间戳的值，只验证其格式，需要其他测试验证时间戳的值。我们也可以固定时间值，用DateFormat将时间转换为字符串表示，然后验证日志内容正确。这个改动就当你的一次练习吧。

下面我们将会进入另一种不可预测的编程领域。在这个领域中，所执行的任务和任务执行的时间都是不确定的。

7.2　测试驱动多线程代码
所谓“并发”是指事情会同时发生。在Java中，并发只是表面现象，所有的事情依旧会顺序发生，不过由于线程调度器（thread scheduler）会频繁地切换当前运行的线程，所以貌似是在同时发生。而在每个线程中，代码还是按照顺序执行。

因此，我们学到的测试驱动顺序程序的知识在并行编程中仍旧有用，尽管有时我们还需要掌握更多细微的技巧去处理并行编程中遇到的难题。

总的来说，可以先测试驱动出顺序执行的部分，然后再考虑并行部分。把顺序执行逻辑隔离在类或者接口之后，不仅对普通的测试有好处，对并行方面的测试也有好处。不过需要注意，代码中的任何同步操作都会对相邻线程的并发性产生影响。

下面我们将会深入介绍并行行为的测试方法。不过在那之前，我们先来讨论可预测的顺序编程以及不可预测的并行编程间的差别。

7.2.1　该测什么

在执行顺序代码时，我们能确定地知道程序执行顺序及逻辑，而并行的多线程代码不是这样。代码执行顺序不再是确定的了，因为线程间会产生交互，还会因为访问同一个对象而产生竞争。

因此顺序代码和并行代码的测试方法也有区别。测试驱动并行代码时，我们不仅要关注顺序行为，还要关注并行行为，因此出错的可能性更大。

下面来进一步研究一下这两个方面。

	更大的出错空间

并行编程出错的可能性更大，各种情形也更难模拟。因此比起顺序编程，并行编程更容易出错。此外，测试代码还可能会影响待测代码的并行性，导致Heisenbugs现象1。

1 会在测试或调试时消失的bug。

由于可能出现的错误太多，在测试中穷举所有情况并不现实。因此需要结合Java并行编程知识和所开发系统的特征，设计出一些关键场景进行模拟测试。

因为这种人工分析的方式可能会漏掉很多错误，所以我们应当使用重复、长时间的测试来保证系统的并发行为确实不会出现问题。

说到不同类型的错误，并行程序中哪些行为是顺序编程中所没有的呢？

	不同类型的并行行为

在面向并行性的单元测试中，我们可以把各种行为划分为两类：

	好的

	不好的

我们期望系统能够具有某些并行的行为，但不希望具有另一些行为。我们可以把“好的”定义成希望系统具有的行为，例如能够异步调用服务，而不是在收到请求时直接同步调用。我们把“不好的”定义为系统需要避免的各种情形。计算机科学文献描述了几个多线程代码中常见的问题，其中最常见的为死锁（deadlock）和饥饿（starvation）。

死锁是操作系统的一种状态，当一个或多个进程等待系统资源，而系统资源又同时被此进程本身或者其他进程占用，就形成了死锁。而饥饿是指因为某种原因，线程调度器不给线程分配CPU资源，因此线程没有机会运行。死锁和饥饿都会使程序无法正常运行。

以上各种情况是我们应当避免的，什么样的行为是我们所期望的呢？这些行为是：

	在线程间共享对象或资源（线程安全）

	方法阻塞

	开始及停止线程

	异步执行

	线程间同步

要给系统添加上述行为，可以使用测试驱动的方法，这也是下面要介绍的内容。

先从对象的线程安全性开始吧。

7.2.2　线程安全

线程安全是指即使多个线程执行同一段代码或者访问同一个资源，执行语义也不会发生改变。虽然我们开发人员可能认为源代码会一行接一行的执行，但实际上编译器会把干净整齐的代码拆成更小的字节码指令。在多线程的情况下，指令会乱序执行！

Java确实提供了控制多线程执行的方法，不过，我们如何能保证所谓线程安全的代码，真的是线程安全的呢？还好，我们有办法。

	局限性

首先，我们要保证测试不会影响代码的并行性，因此在测试中应当避免使用“钩子”来控制产品代码的执行过程，因为这种同步操作会影响产品代码的并行特征。我们应该尽量把握住待测代码的本质特征来进行测试。

在没有可以安全访问的常量时，测试线程安全常用的一种方法是智能强力测试法。所谓智能是指专门优化测试，使其能最大程度暴露出代码中可能存在的问题。通常这类测试都会创建多个线程执行待测代码，并且利用barriers及latches等同步对象最大化并发数目。如果不用barriers及latches，那么线程启动的开销，会让并行执行变为顺序执行，每个线程在前一个线程结束后才开始执行。

下面来看一个例子，演示强力测试和Java 5中的同步对象。

	线程安全性测试的例子

假设我们正在开发一个线程安全的计数器。在多个线程同时增加计数时，结果也应该是正确的。

我们先从基本功能开始，下面这个测试保证在单线程情况下执行结果正确。

@Test
public void testBasicFunctionality() throws Exception {
 Counter counter = new Counter();
 assertEquals(0, counter.value());
 counter.increment();
 assertEquals(1, counter.value());
 counter.increment();
 assertEquals(2, counter.value());
}

代码清单7-9中的实现可以通过测试。

 代码清单7-9　在单线程情况下正确的实现

public class Counter {
 private int counter;
　
 public void increment() {
 counter++;
 }
　
 public int value() {
 return counter;
 }
}

那么，我们如何能保证在多线程同时访问的情况下，我们的Counter类依旧能够正常工作呢？当然是写测试了！在测试中，用多个线程同时访问Counter实例，验证不会漏计数。

代码清单7-10中是测试的实现方式之一。

 代码清单7-10　启动多个线程增加计数

@Test
public void testForThreadSafety() throws Exception {
 final Counter codeUnderTest = new Counter();
 final int numberOfThreads = 20;
 final int incrementsPerThread = 100;
　
 Runnable runnable = new Runnable() {
 public void run() {
 for (int i = 0; i < incrementsPerThread; i++) {
 codeUnderTest.increment();
 }
 }
 };
　
 for (int i = 0; i < numberOfThreads; i++) { /*❶（以下3行）启动线程*/
 new Thread(runnable).start();
 }
　
 Thread.sleep(500); /*❷（以下3行）等待线程结束并验证Counter的数值*/
 assertEquals(numberOfThreads * incrementsPerThread,
 codeUnderTest.value());
}

在测试7-10中，我们启动了多个线程同时访问Counter对象❶，然后验证计数值与increment方法的调用次数一致❷。

这个测试大约只有一半的几率会失败，虽然Counter摆明了不是线程安全的（因为++操作符不是原子操作，也没有任何其他同步机制）。这个测试可以改进的方面还有许多。

	最大化并发性

代码清单7-10中的测试常常不失败，这是因为各个线程恰巧为顺序执行，而非并行执行。在这种情况下，我们可以延长执行时间，在第一个线程结束前，让其他线程有足够的时间启动。在这个例子中，可以增加每个线程调用Counter的次数来延长执行时间。

除此之外，我们还可以使用barrier等同步对象来保证所有的线程都启动之后才会执行计数操作。这样还能够避免调用Thread#sleep，因为这方法徒增加测试执行时间，还不能保证等待之后所有线程都能结束执行。

代码清单7-11中为改进后的测试。每个线程调用计数器的次数都增加了10倍，此外使用了CyclicBarrier2以避免线程启动的额外开销给并行性带来的影响。

2 在本章稍后部分将会讨论CyclicBarrier和他的朋友们。

 代码清单7-11　改进后的测试

@Test
public void
 testForThreadSafetyUsingCyclicBarrierToMaximizeConcurrency()
 throws Exception {
 final Counter codeUnderTest = new Counter();
 final int numberOfThreads = 20;
 final int incrementsPerThread = 1000;
　
 CyclicBarrier entryBarrier = /*❶（以下4行）为正创建的线程创建barrier并加上当前线程*/
 new CyclicBarrier(numberOfThreads + 1);
 CyclicBarrier exitBarrier =
 new CyclicBarrier(numberOfThreads + 1);
　
 Runnable runnable = new Runnable() {
 public void run() {
 for (int i = 0; i < incrementsPerThread; i++) {
 codeUnderTest.increment();
 }
 }
 };
　
 for (int i = 0; i < numberOfThreads; i++) {
 new SynchedThread(runnable, entryBarrier, /*❷（以下2行）定制线程在barrier处等待*/
 exitBarrier).start();
 }
　
 assertEquals(0, codeUnderTest.value());
 entryBarrier.await(); // ❸线程开始执行
 exitBarrier.await(); // ❹等待所有线程结束
 assertEquals(numThreads * incrementsPerThread,
 codeUnderTest.value());
}

代码清单7-11中引入了两个CyclicBarrier同步对象❶。CyclicBarrier就像是个水闸，等在闸前的线程足够多时，才会开闸放线程。我们自己创建了一个Thread类❷，在其内部使用这些同步对象。在执行测试逻辑前，线程会在入口barrier处等待，而执行结束后，线程会在出口barrier处等待其他线程，见代码清单7-12所示。

因为所有的线程都在入口barrier处等待，所以我们可以在测试中调用入口barrier❸，在所有的线程都启动完毕后再调用计数器——不让线程启动开销给测试带来任何影响——然后再调用出口barrier来阻塞测试方法，直到所有线程都完成工作后才继续❹。

 代码清单7-12　同步执行的自定义线程类

import java.util.concurrent.CyclicBarrier;
　
public class SynchedThread extends Thread {
　
 private CyclicBarrier entryBarrier;
 private CyclicBarrier exitBarrier;
　
 public SynchedThread(Runnable runnable,
 CyclicBarrier entryBarrier,
 CyclicBarrier exitBarrier) {
 super(runnable);
 this.entryBarrier = entryBarrier;
 this.exitBarrier = exitBarrier;
 }
　
 @Override
 public void run() {
 try {
 entryBarrier.await(); // 等待其他线程
 super.run(); // 执行
 exitBarrier.await(); // 暗示完成
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 }
}

代码清单7-12中改进过的测试已经能够更加稳定地失败了，这说明某些计数操作被Counter类忽略了，因为其并不是线程安全的。这时我们必须要在increment方法上标记synchronized关键字了。

虽然线程安全性的测试比基本程序逻辑测试更加复杂，不过也不是不能实现。虽然因为线程调度的不可控性，多线程测试不是完全可靠，但如果能深入了解待测问题，提高期望线程调度顺序发生的概率，还是能将多线程测试的不稳定性带来的负面影响降到最低的。

除了线程安全性外，阻塞操作的测试也值得研究。

7.2.3　阻塞操作

有时候，我们希望某些方法在完成全部操作前都处于阻塞状态。例如，事务接口上的commit函数应当在事务完全提交后才返回，继续下面的操作。总的来说，我们期望一个方法一直处于阻塞状态，直到某个特定的事件发生。

这给测试带来一系列的问题：我们如何知道方法阻塞了？在确认方法确实处于阻塞状态后，又如何让方法继续执行？下面先来看个例子，然后再想办法解决这些问题。

	从黑市买票

假使明天是你夫人的生日，你答应过她一起去看Knicks game，不过你把这事儿给忘了，没买票。等想起来时，票都已经卖完了。现在只能从黑市买票了，但是运气不佳，一直没买到。这种情况相当于调用了阻塞的BlackMarket#buyTicket方法。

因为待测方法会阻塞，所以有必要另起一个线程调用这个方法。此外，我们还需要在线程中知道方法执行是否成功，也要知道方法是否真的阻塞了。方法阻塞后，我们还需要中断调用线程验证执行已经完毕。见代码清单7-13。

 代码清单7-13　测试验证线程受阻且已经执行完毕

@Test
public void testBlockingBehavior() throws Exception {
 final AtomicBoolean blocked = new AtomicBoolean(true);
　
 Thread buyer = new Thread() {
 @Override
 public void run() {
 try {
 new BlackMarket().buyTicket(); // ❶在另一个线程中调用阻塞方法
 blocked.set(false); // ❷如方法可行，设置标记
 } catch (InterruptedException expected) {
 }
 }
 };
　
 buyer.start(); /*❸（以下4行）线程开始，等待，中止*/
 Thread.sleep(1000);
 buyer.interrupt();
 buyer.join(1000);
　
 assertFalse("Thread didn't interrupt!", buyer.isAlive()); /*❹（以下2行）验证*/
 assertTrue("Method didn't block!", blocked.get());
}

代码清单7-13中，我们创建了新的线程，调用了BlackMarket的buyTicker方法❶。这个方法应该一直阻塞，直到有人调用sellTicket方法。如果这个方法没有阻塞，那么我们会设置一个标记❷，测试会失败。我们在buyTicket方法处检查InterruptedException异常，因为接下来我们会中止线程，让方法从阻塞状态中恢复。

一旦创建好这个线程，我们就可以让其运行❸，等待1秒钟后，让线程调用阻塞方法。接着中止了线程，等待线程执行完毕。最后验证线程确实执行完毕了，方法也确实阻塞了❹。

这个测试可能有些复杂了，我们只是测试了一个方法是否是阻塞的而已。不过这至少证明方法是可行的，而且只要做个小的重构把共用部分提取到基类中，就可以重用了。这就当作你的一次练习吧。

继续下面的内容前，我们先来看看线程API中一些需要注意的问题。

	不要依赖于线程状态

如果熟悉Java线程API，你可能会知道Thread类有个getState方法，似乎正好用来测试线程阻塞。不过Thread#getState并不可靠。JVM规范里面并没有要求线程何时必须进入等待（或阻塞）状态。此外，线程也可能从Object#wait中假恢复过来，一个阻塞的线程也可能临时切换到运行状态。所以还是忘了Thread#getState吧，想想其他办法。

7.2.4　启动及中止线程

多线程系统肯定会涉及到线程的启停。有的系统启停线程十分频繁，有的少一些。有的软件架构会向应用开发人员隐藏背后的线程，而有的会暴露所有细节。假使我们需要写代码启动及停止线程，来看个例子如何用Java5 中的java.util.concurrent 包提供的新API完成这项工作。

	用工厂启动线程

在Java 5之前的版本中，我们只能直接创建Thread实例启动线程。Java 5中引入了ThreadFactory接口（如代码清单7-14所示）来创建Thread对象。

 代码清单7-14　java.util.concurrent.ThreadFactory

public interface ThreadFactory {
　
 public Thread newThread(Runnable runnable);
}

ThreadFactory接口实际上隔离了线程创建代码和Thread的具体实现。有了ThreadFactory接口，再加上依赖注入，测试线程的启停将变得轻而易举。下面看个例子。

	用ThreadFactory及自定义线程

假设我们要开发一个能随意启停的Server类。当Server开始时，后台会启动一个线程来监听网络连接请求，当Server停止时后台线程也应该停止。

我们打算给Server类一个自定义的ThreadFactory，用其创建Thread对象，这样我们在测试中就可以进行检测了。我们首先需要一个自定义的Thread类提供必需信息，代码清单7-15中为Thread类的实现。

 代码清单7-15　提供了同步点的自定义线程类

import java.util.concurrent.*;
import static junit.framework.Assert.*;
　
public class StartStopSynchronizedThread extends Thread {
　
 private CountDownLatch threadStarted;
 private CountDownLatch threadStopped;
　
 public StartStopSynchronizedThread(Runnable task) {
 super(task);
 threadStarted = new CountDownLatch(1);
 threadStopped = new CountDownLatch(1);
 }
　
 @Override
 public void run() {
 threadStarted.countDown(); // ❶Latch对象等待线程启动及停止
 super.run();
 threadStopped.countDown(); // ❶Latch对象等待线程启动及停止
 }
 public void waitForStarted(long timeout, TimeUnit unit) /*❷（以下10行）在线程开始和结束前提供阻塞方法*/
 throws InterruptedException {
 assertTrue("Thread not started within timeout.",
 threadStarted.await(timeout, unit));
 }
　
 public void waitForStopped(int timeout, TimeUnit unit)
 throws InterruptedException {
 assertTrue("Thread not stopped within timeout.",
 threadStopped.await(timeout, unit));
 }
}

代码清单7-15中是一个简单的类❶，包装了Thread类的run方法，在其前后各放置了一个叫做latch的同步对象，这些latch用于等待线程的启动及停止。只有当此线程完成启动或停止执行后，其他线程才可以利用waitForStarted及waitForStopped❷方法等待线程的启动及停止。

现在我们可以试着用这些方法测试驱动出Server类的start及stop方法了。代码清单7-16中为样例代码。

 代码清单7-16　验证线程启动及停止的测试

import java.util.concurrent.ThreadFactory;
import org.junit.*;
　
public class TestServerStartsAndStopsThread {
　
 private StartStopSynchronizedThread thread; // ❶创建自定义线程，并留作后用
　
 @Test
 public void testStartingAndStoppingServerThread() throws
 Exception {
 ThreadFactory threadFactory = new ThreadFactory() {
 public Thread newThread(Runnable task) {
 thread = new StartStopSynchronizedThread(task); /*❶（以下2行）创建自定义线程，并留作后用*/
 return thread;
 }
 };
　
 Server server = new Server();
 server.setThreadFactory(threadFactory); // ❷带自定义Thread Factory的确认服务
　
 server.start();
 thread.waitForStarted(1, TimeUnit.SECONDS); // ❸使用自定义的latch验证线程是否开始/结束
　
 server.stop();
 thread.waitForStopped(1, TimeUnit.SECONDS); // ❸使用自定义的latch验证线程是否开始/结束
 }
 }

代码清单7-16中的测试可以分解成几部分：首先创建一个自定义的ThreadFactory，这个ThreadFactory会返回一个自定义的线程类的实例。创建出ThreadFactory后，将实例传给Server，让Server使用我们自定义的ThreadFactory，而非java.util.concurrent.Executors中的系统默认的ThreadFactory。

在测试的余下部分，我们首先启动了Server，然后再用自定义线程类的latch等待线程启动（或者超时，测试失败）。当启动latch触发时，我们会停止Server，然后用停止latch等待后台线程停止执行。

7.2.5　异步执行

我们已经看到了如何测试现成的启动及停止。不过，在测试中并没有验证线程启动后做了些什么。既然启动线程是有原因的，那么验证线程启动后所做的工作也是有必要的。那么，该怎么测试呢？

	用typed Runnables 分解问题

方法之一是使用typedRunnable实现，验证待测代码给我们那自定义的ThreadFactory传入了正确类型的Runnable实现。接下来我们就可以单独测试Runnable实现了。这样做是为了把问题分解成独立的两部分，分别完成后整个问题也就解决了。不过这种解决方法看起来有些奇怪，而且在Java并行编程中并不算常见，因此我们来尝试另外一种更常见（但并不一定更好）的测试方法：等待结果。

	等待结果

要验证异步调用结果，我见过的所有程序员基本上都选择等待。等足够长时间，然后验证异步执行的结果。见代码清单7-17。

 代码清单7-17　等待异步执行结果的测试

LongLastingCalculation calc = new LongLastingCalculation();
calc.start();
Thread.sleep(2000); // 计算需要1秒，等待需要2秒；需要确认
assertEquals(42, calc.getResult());

要等多长时间，显然取决于待测代码，而且每个测试的必要等待时长都不一样。因为不想让测试随机性的失败，所以我们通常会等待足够长时间，让异步操作完成工作。在这个例子中，我们假设2秒钟足以让异步调用完成计算。如果实际计算时间只需要1秒，那么每次运行这个测试我们都会浪费1秒钟。

理想情况下我们可以注册某个回调函数，当异步调用结束时这个函数会被调用，但并不总能这样（例如我们要测试的某个外部API）。如果不能采用回调，那么我们仍旧可以采用polling的方法进行优化。代码清单7-18中是名叫RetriedAssert的工具类3，RetriedAssert能让我们在一个循环中执行自定义的验证方法，直到验证通过或者超时循环才会停止。

3 这个类由Kevin Bourrillion编写，在JUnit Yahoo! Group里可以随意下载，在这里改写成了JUnit 4版本。

 代码清单7-18　重试验证方法，直到验证失败或者超时

/**
 * This class allows you to assert a condition that may not be
 * true right at the moment, but should become true within a
 * specified time frame. To use it, simply replace calls like:
 *
 * assert(someCondition);
 *
 * With:
 *
 * new RetriedAssert(5000, 250) { // timeout, interval
 * public void run() throws Exception {
 * assert(someCondition);
 * }
 * }.start();
 *
 * The start() and run() methods were named after those in
 * java.lang.Thread, whose function they mimic.
 *
 * This class was written by Model N, Inc. You may use it and
 * modify it any way you wish--but please leave this message intact.
 *
 * @author Kevin Bourrillion (kevinb@modeln.com)
 */
public abstract class RetriedAssert {
　
 private int _timeOutMs;
 private int _intervalMs;
　
 protected RetriedAssert(int timeOutMs, int intervalMs) {
 _timeOutMs = timeOutMs;
 _intervalMs = intervalMs;
 }
　
 public final void start() throws Exception {
 long stopAt = System.currentTimeMillis() + _timeOutMs; /*❶（以下2行）超时前一直循环*/
 while (System.currentTimeMillis() < stopAt) {
 try {
 run(); /*❷（以下2行）测试通过后验证并返回*/
 return;
 } catch (AssertionError ignoreAndRetry) { }
 try {
 Thread.sleep(_intervalMs); // ❸再次验证前等待一段时间
 } catch (InterruptedException ie) {}
 }
 // All tries have failed so far. Try one last time,
 // now letting any failure pass out to the caller.
 run();
 }
　
 public abstract void run() throws Exception;
}

RetriedAssert的基本想法是：❶执行一个循环，直到超时。❷在循环中我们可以做验证，❸等待一段时间，然后再进行验证，直到通过测试或者超时。如果验证失败，测试将失败。

代码清单7-19演示了如何用这种工具类验证长时间执行的异步调用，同时不浪费额外的等待时间。

 代码清单7-19　使用RetriedAssert

@Test
public void testByRetryingTheAssertOften() throws Exception {
 final LongLastingCalculation calc =
 new LongLastingCalculation();
 calc.start();
 new RetriedAssert(2000, 100) { // ❶指定超时时长
 @Override /*❷（以下4行）覆盖抽象的run()方法*/
 public void run() {
 assertEquals(42, calc.getResult());
 }
 }.start();
}

实际上RetriedAssert并不是什么高级货。我们❶只需要指定超时时长，指定每次验证之间的时间间隔，然后❷再提供验证逻辑就可以了。假设代码清单7-19中的LongLastingCalculation需要1秒的执行时间，那么这个测试基本上会在1100毫秒内完成。如果计算任务需要2秒，那么验证方法则需要2秒多即可完成。

注意，如果执行结果不正确（例如返回了13，而不是42），测试不会立即失败，而是要等到RetriedAssert超时。不过，比以前的方法还是好点。

迄今为止，我们讨论了用线程异步工作的测试技巧和工具。下面来讲如何测试多个线程间的协作吧。

7.2.6　线程同步

完成一项大的任务通常需要各方面的通力合作。例如建造一所度假屋，需要木工、管道工、粉刷匠等各种人参与。粉刷匠在粉刷之前，必须要等其他工人把墙做好，否则没得刷。在软件领域也是一样，各个线程之间时常需要同步。那么，我们该如何测试线程同步呢？

大多数情况下，我们可以直接让线程执行，然后验证执行结果。把这种方法和分治法相结合，就可以确保功能正确了。毕竟，多线程也不过是由单个线程组成的，在同步点之前，单个线程的运行都是独立的。只要多花些功夫，再找测试替身帮忙，我们完全可以保证单个线程行为正确，也可以验证大部分可能出错的情形。

多线程合作最终可以分解成一组简单的同步问题——只要我们清楚工具的使用方法，每一部分都很容易测试。在总结本章前，先来看看Java 5里提供的同步对象吧。

7.3　标准同步对象
在多线程编程里，如果每个线程间完全独立，那么确实很理想，不过线程间时常需要同步。多线程是编程方面最困难的领域之一，因此最好能学着使用Java 5的java.util.concurrent包里提供的各种线程间通信的抽象（abstraction），而不要在底层的锁（lock）或者wait/notify方法基础上重新发明各种同步工具。

在本章前面的内容中，我们已经使用过了一些标准同步对象。现在，我们会对所有的同步对象进行简单介绍，遇到问题时就知道该用什么工具解决了。

先从最简单的信号量开始介绍。

7.3.1　信号量

信号量（Semaphore）实际上是一个许可的有限集。线程从信号量中获得许可，然后才能做自己的工作。当工作完成后，线程会把许可交回给信号量，让其他线程使用。

计数信号量可能是使用最广泛的一种了。这种信号量内有多个许可，可以限制特定资源最大的并发访问个数。

比如我们要写一个p2p工具，支持多文件同时下载。每个文件开始下载前先要从信号量中获得许可。如果下载完成或者取消，那么许可将会被释放回信号量中，这时队列中的下载请求就可以获得请求开始下载了。这是技术信号量使用的典型场景之一。此外，还有一种只包含一个许可的信号量。这种信号量实际上蜕化成了经典的同步锁，一次只让一个线程访问关键的共享资源。

当简单的信号量不能满足需求时，我们可以用其他更复杂的同步方式，例如latch。

7.3.2　latche

latch就像一个坝，所有到达latch的线程都必须等待latch释放才能通过。latch一经释放，就会一直处于开启状态。也就是说latch是一次性的同步点。

java.util.concurrent包中包含了CountDownLatch类。当有一定数量的线程调用计数方法后，CountDownLatch会自动释放。我们已经见到多处代码清单中用到了CountDownLatch（例如在代码清单7-15中），其主要用来阻塞主线程，直到并发执行的线程到达某个执行点后主线程才继续执行。

7.3.3　barrier

barrier可以说是特殊的latche。它和latch的主要区别在于，latch 是一次性的,而CyclicBarrier可以重复使用。此外，latch可以在所有线程都经过前即开始释放，而barrier通常需要所有的线程都在barrier处等待，然后才一起释放。

我们可以用barrier让5个线程给我们表演实境节目。这5个线程每个调用barrier对象的await方法等待其他线程，所有线程都就绪后同时开始执行。代表竞赛各方的线程都到达barrier后，barrier开始释放，5个线程同时执行任务，执行完后又在barrier处等待——等其他线程准备就绪后再开始下一轮竞赛。

除了CyclicBarrier外，java.util.concurrent包还提供了Exchanger。这种特殊的barrier专门用来让线程交换数据。拥有两个独立的线程并从一个线程读取数据，然后写入另一个线程的I/O组件，是学习使用Exchanger的标准示例。从本质上说，当读取线程填充完其缓冲区，而写入线程写完原有数据时，它们会通过Barrier来交换缓冲区。

说到交换数据，下面还有一个标准同步工具要介绍——Futures。

7.3.4　future

future，由Future接口表示，由Future Task类实现。本质上，它是一个可以取消的异步任务，这个任务会产生一个结果。有了它以后，无须编写相应的同步代码，只要在调用线程和在后台计算结果的线程之间共享future即可。调用线程可以调用Future的get，进入阻塞状态直到结果返回（或者在通过重载方法配置超时的情况下超时）。

信号量、latch、barrier和future这4种同步对象能帮我们更容易地构建多线程应用程序。技多不压身，掌握这些同步对象的使用对测试驱动多线程应用程序肯定是有益无害的。

现在来对本章内容做个总结吧。

7.4　小结
本章主要内容是测试驱动不可预测型代码。时间相关的功能和多线程是其中最重要的两种类型。

我们首先研究了一个日志组件的例子，这个组件的功能是记录带有时间戳的日志信息。我们试着用许多方法测试组件的行为，包括对日志信息的时间戳部分进行模糊匹配，也试过隔离出时间相关的代码部分，然后再测试中重写以方便测试。

除了这些较为简单直观的方法外，我们还讨论了如何把时间这种不可预测的值包装在接口之后，然后将其替换成我们可控的值。用自定制的类替代系统时间类，使很多复杂的功能变得很容易测试。

解决完棘手的时间问题后，我们转而研究了多线程程序。我们首先特别讨论了多线程程序和单线程顺序执行的程序间的本质区别。

本章的余下部分讨论了如何测试驱动各种不同的多线程行为。我们讨论了如何测试多线程访问共享资源时的线程安全性。我们还讨论了如何测试线程的阻塞状态（以及如何消除阻塞状态），同时讨论了如何测试线程的启动及停止。最后我们讨论了如何测试异步方法调用以及如何把线程间的同步操作分解成一个个简单问题逐个测试。

为了能更好地处理多线程并行编程中遇到的问题，本章最后简要介绍了Java标准API中提供的同步对象。

总之，并行测试会与代码实现细节相关，比顺序执行的代码更难测试。不过我们也看到了，用测试先行的方法构建多线程应用仍旧可行。而且就是因为并行编程的复杂性，才使得测试先行的开发方法变得更有必要。此外，要保证代码的可测试性，写代码时测试先行是最好的办法。

第8章　测试驱动Swing代码

 设计并不仅仅是指产品的外观和给人的印象，还包括产品的性能。

 ——乔布斯

我开发的大部分系统都是后台应用，这些应用没有用户界面。这类系统很容易做自动化测试，因为总有些“技术界面”可以做自动化操作。不过若是有了图形化的用户界面（GUI），事情就没这么简单了。GUI不仅仅是屏幕上会动的控件，还必须简单易用，同时还要美观。

在本章中，我们将会探索Java Swing开发的TDD方法。首先讨论应该在Swing用户界面上测试些什么。做这种讨论的原因是，对于GUI中的某些部分，做测试自动化是没有意义的，所以也没有必要用TDD。在确定GUI测试的问题领域后，我们会介绍一些设计模式，用来帮助测试驱动GUI代码。

先确定问题，再了解Swing GUI的组织结构、Swing代码的测试工具以及开源的Abbot。最后我们会用JUnit和Abbot库，从零开始测试驱动出Swing代码。

准备好了吗？

8.1　Swing UI中该测试什么
在图形界面中该测试些什么？这个问题可不好回答，除非你能接受“看情况”这种一般人接受不了的答案。虽然没有一个通用的准则让Swing开发人员遵循，但我们还是可以依据类别和特性把Swing代码分成几类，每一类有各自的测试方法。

我们可以考虑Swing GUI的以下几个方面：

	内部基础设施及实用程序

	渲染及样式

	交互

下面，我们将分别讨论这3种类型及其测试。

先从内部基础设施开始吧。

8.1.1　内部基础设施及实用程序

虽说UI主要用来显示，但这并不表明所有的代码都和显示有关。部分UI代码与后台系统、批处理系统或其他并不那么“可视化”的代码并无本质区别。

Swing用户界面需要对用户输入的数据进行验证、类型转换、格式化字符串显示，等等。这些工作和Swing API完全没关系，测试驱动也很容易。

但是，如果使用了Swing API，那么就不一样了。这正是我们需要讨论的：渲染及布局。

8.1.2　渲染及布局

Swing API是专门用来绘制和组织GUI控件的。如果要显示一个按钮，那么就把按钮控件放到布局上。如果要在很小的一块区域中显示很多东西，则需要一个带滚动条的容器。如果要用图形显示数据库中的数据，那么就需要创建一个画布控件，在这个控件上画点连线。这些都是Swing GUI的可视部分。现在我们的问题是，从渲染和布局角度看，该测些什么？

 提示　不要测试外观和布局。

总的来说，我不测布局。如果要做一个包含两个按钮的面板，我不会写测试验证第一个按钮距容器顶部3个像素，距容器左端5个像素。以像素精度测试布局会降低开发速度，在提高代码内部质量方面却没什么帮助。这部分验证工作，我希望留在目测阶段进行，因为无论如何我们都是要看看GUI长什么样子的。

我们有时会测试界面的大体布局。例如可能有这样的测试“如果面板C显示出来了，那么按钮A应该在按钮B的上面”或者“按钮A和B在屏幕上应该有同样的宽度”。这类测试虽然不是很精确，但比较健壮，因为控件位置的微小调整不会让测试失败（例如，把空间宽度从200像素调到192像素）。

不过有时候也需要以像素级精度进行测试，例如画布控件。我们可以写一些像素级别的测试验证小圆圈，画在点的周围，或者验证线是蓝色还是绿色取决于它是否有一个端点位于X轴的下方，等等。

写像素级别的测试时，要掌握度。例如在编写plotter控件时，大部分测试应该覆盖内部模型，就是plotting数据。只要一小部分测试覆盖简单数据集在画布上的显示结果即可。而且如果不必要，就不要验证像素。

工具代码（Utility code）、渲染及布局并不是Swing GUI的全部。Utility代码只不过是独立的工具和函数而已，而渲染和布局也只不过是一些只读的东西。我们还没有讨论到如何给GUI添加行为——用户输入或后台线程引发的控件间的交互行为。

8.1.3　交互

按钮、下拉列表框及其他GUI 控件，如果用户不用来和应用程序交互，那么一点用处都没有。这些控件就是要接受用户输入，改变系统状态的。有时候，控件需要和其他GUI控件交互，例如根据其他控件的状态过滤下拉列表框的可选值。

比起实用程序代码这种和Swing API完全没关系的代码，控件间的交互行为并不好测试。不过也不是需要拿到博士学位才能做好。只要熟悉Swing API，就能够测到我们想测的交互行为。例如，要模拟或者验证控件输入，首先要知道Swing控件如何处理用户输入才可以。

要演示这种交互行为的测试方法，最好能用一个例子，本章后面会有这样一个例子。在这之前，我们先来熟悉一些用户界面的设计模式，用于隔离GUI控件的外在表现和内部行为。

8.2　可测试UI代码的模式
要说UI模式，不能不提模型—视图—控制器（MVC）架构。它起源于Smalltalk-80，对GUI程序构建方式的影响持续至今。长话短说，图8-1中刻画了MVC 3个部分间的关系。

图8-1　MVC三元组及各部分的关系。控制器根据视图的输入来操作模型；模型只关注于领域逻辑，完全不知道视图和控制器的存在；视图会监听模型的变更，也会显示模型的数据

在MVC中，控制器用来响应视图中的控件所捕获的用户输入，相应地改变模型，然后通知视图进行更新。模型主要用来封装领域逻辑，如果用了Observer模式，领域模型发生变化时要通知视图。View负责，把模型上的数据显示出来。

虽然和经典的MVC模式不完全一样，Java Swing的设计与MVC十分相似。在Java Swing中，视图和控制器合并在了一起，因为“视图和控制器本身就是紧耦合的”。

这种合并也使得Swing UI可测试性受到了影响，因为没法隔离出视图来独立测试控制器。重复一遍Martin Fowler的话，可视对象总比不可视的难测些。大多数情况下我们都可以（也应该）在一个简单容器窗口中实例化控件，然后模拟用户交互行为来测试控制器和视图的逻辑。

不过这种办法并不总是可行，而且可能会带来其他麻烦，例如让测试变得很慢等。所以，如果可以，我们还是希望能分开测试控制器逻辑和表现层。幸好，MVC的一些兄弟能帮到我们。

下面我们会介绍3个相互联系的模式。这些模式能帮助UI代码的组织以提高可测试性，让富客户端的TDD变得更容易。这些模式是：

	经典MVP（Model-View-Presenter）

	Supervising Controller

	Passive View或The Humble Dialog Box

所有这些变体基本反映的是同一个主题——把逻辑从视图中移出去，让它离视图越远越好，这样就能解决测试问题了。实际上，可以把后两个模式当作经典MVP模式的变体。

下面先简要介绍经典MVP模式，然后再看Supervising Controller和Passive View（Humble Dialog Box）各自的特点。

8.2.1　经典MVP

经典MVP模式最初由Taligent公司于1996年提出。在最初的设计中，视图中的控件会把接收到的用户输入直接转给presenter对象，由其进行事件处理。视图监听模型的变化以更新自己的状态（Observer模式）。

这样，视图只管渲染模型，没有其他任何逻辑，因此利用presenter或模型的测试替身做测试也很容易。同样，若presenter不依赖于Swing API，那么只要给presenter传入事件对象，验证模型做了相应改变即可。

在具体实践中通常会用MVP的两个变体，Martin Fowler（许多设计及架构相关书的作者）对此有文章详细描述。这两种变体是Supervising Controller及Passive View，下面来进行介绍。

8.2.2　Supervising Controller

Supervising Controller模式是MVP模式的一个变体，其中presenter（或controller）负责处理所有用户输入（视图把所有用户输入都直接转给presenter），视图—模型间的数据同步用binding机制来处理。Binding机制与observer模式类似，模型对象发生变动时会通知监听者，即presenters，presenter会继而通知视图控件从模型对象中读取数据，更新视图。

在这种presenter和视图对象的组织方式下，视图层基本没有逻辑。再强调一遍，这点很重要，因为视图层的代码比普通Java代码更加难测。

为了讲得更清楚，下面来看一个例子。假使我们要为一个单元测试框架开发一个图形界面。这种界面上一定要个绿条，否则不圆满，所以我们这里加了一个。图8-2中为绿条UI的基于Supervising Controller的设计图。

图8-2　绿条UI的基于Supervising Controller的设计图

在图8-2中，首先，一定要一个领域模型，我们称之为GreenBarModel。其表示上次测试执行的结果，也是我们绿条控件需要显示的模型。GreenBarSupervisingController会监听GreenBarModel的变化，然后通知GreenBarView根据测试结果来更新颜色。GreenBarSupervisingController也会监听视图来处理用户输入（在本例中，就是点击Run按钮）。

代码清单8-1中为这个简单的presenter的实现。

 代码清单8-1　Supervising Controller模式中presenter的实现

public class GreenBarSupervisingController {

 private final GreenBarModel model;
 private final GreenBarView view;

 public GreenBarController(GreenBarView view,
 GreenBarModel model) {
 this.view = view;
 this.model = model;
 view.addRunButtonListener(new RunButtonListener() { /*❶（以下6行）注册用户输入*/
 public void onRunButtonClick() {
 model.runTests(); // ❷在模型对象上运行
 updateView(); // ❸通知视图更新
 }
 });
 updateView();
 }

 private void updateView() { /*❸（以下3行）通知视图更新*/
 view.update(model);
 }
}

从代码清单8-1中可见，presenter会把事件处理逻辑❶挂到从视图传来的各种用户输入上，这些处理逻辑会修改模型对象❷，然后再触发视图更新❸。因为GreenBarView只是个接口，GreenBarModel也是个普通Java对象，所以presenter十分容易测试。Presenter丝毫没有用到javax.swing——这一切全在视图中。

既然提到视图了，我们来看看Supervising Controller风格的GreenBarView：

public interface GreenBarView {

 public void addRunButtonListener(RunButtonListener listener);

 void update(GreenBarModel model);
}

接口相当简单。一个方法用来注册新的事件处理逻辑，另一个用来通知视图用GreenBarModel模型中的数据更新视图显示。相应的Swing实现也很容易测试。

	初始化View类，注册一个监听器，模拟点击Run按钮，然后验证监听器收到了事件。

	初始化View类，将模型传给它做更新用，然后验证控件的新值正确。

一会我们将讨论如何实现这些测试。不过现在，先集中注意到presenter及整个模式上吧。

注意到了吗？代码清单8-1中，presenter把整个模型都传给了视图。在这个例子中，这么做没什么问题。而在实际应用中，presenter会以更细的粒度通知视图进行局部更新。这是在耦合性和性能之间做权衡。（比起这个简单的例子，这种考虑在复杂的UI上体现得更明显。）

粗粒度的全屏更新可能会导致严重的性能及可用性问题，如果只更新需要更新的那部分，则会好得多。而从另一个角度看，如果做细粒度的更新，那么控制器和视图间的耦合会更紧密，这样也不好。在实际操作时，我建议先从粗粒度的更新开始，因为这方法更自然些。如果性能问题逐渐显现出来了，再把更新动作拆分开。

刚才介绍的就是MVP模式的Supervising Controller变体。下面来介绍它的另一个变体Passive View模式，它能让视图变得更加薄（也更容易测）。

8.2.3　Passive View

Passive View模式（也叫Humble Dialog Box，请参照Michael Feathers同名文章）是另外一种MVP模式的变体。Passive View中的presenter除了要处理用户输入外，还要负责更新视图。视图只需要接受用户输入然后转给presenter即可。如果视图需要更新，那presenter会告诉视图具体哪些部分要发生变化。也就是说，视图和模型之间不再有任何联系了。

比起Supervising Controller，Passive View的视图层逻辑更少了。视图对象除了被动地显示外，什么都不做，如图8-3所示。

图8-3 Passive View (The Humble Dialog Box)中的视图层非常薄，把尽可能多的视图逻辑封装到presenter中

在图8-3中的Passive View设计中，我们当然还要有一个GreenBarModel。这时GreenBarPresenter会监听GreenBarModel对象的变化，根据模型中的数据来决定显示何种颜色，然后再告诉GreenBarView更新显示条的颜色。和Supervising Controller一样，GreenBarPresenter也需要在视图上注册事件处理逻辑来响应用户输入。

代码清单8-2中为图8-3的实现方法之一。

 代码清单8-2　在Passive View模式中presenter的实现

public class GreenBarPresenter {

 private final GreenBarModel model;
 private final GreenBarView view;

 public GreenBarPresenter(final GreenBarModel model,
 final GreenBarView view) {
 this.model = model;
 this.view = view;
 view.addRunButtonListener(new RunButtonListener() { /*❶（以下6行）注册输入*/
 public void onRunButtonClick() {
 model.runTests(); // ❷运行模型
 updateView(); // ❸更新视图
 }
 });
 updateView();
 }

 private void updateView() {
 Color newColor = (model.numberOfFailures() == 0) /*❹（以下4行）presenter中的显示逻辑*/
 ? Colors.testsPassed()
 : Colors.testsFailed();
 view.setBarColor(newColor);
 }
}

代码清单8-2中的代码和代码清单8-1中的区别不大。我们一样要在视图上注册事件处理逻辑响应用户输入❶，也要相应地修改模型❷，更新视图❸。所不同的是presenter会主动找出需要更新的内容❹，而不是直接通知视图去自我更新。

在Passive View中，视图完全不知道模型的存在——它只知道有人告诉它要用给定的颜色重绘显示条，如下代码所示：

public interface GreenBarView {

 public void addRunButtonListener(RunButtonListener listener);

 public void setBarColor(Color color);
}

对比一下视图的实现方式就能看出，Passive View模式把逻辑从视图更彻底地移到了presenter中。这样视图只需要接受用户输入，将输入转给presenter，然后再显示presenter让它显示的东西就行了。这样视图就更容易测试了。

	初始化视图类，注册监听器，模拟点击Run按钮，然后验证监听器接收到了事件。

	初始化视图类，给视图传些显示数据，然后验证相应组件包含了新值。

关于模式的讨论现在已经足够了。虽然这些MVP模式能够分解问题，让单元测试和TDD更容易。不过需要注意（对于在遗留代码上工作的Swing开发人员，这是个好消息），就算没有按照模型、视图和控制器分割，Swing代码一样可以单元测试。

要做这种测试，必须能够访问Swing应用的控件树。有些开源的软件能够帮到我们，下面对这些工具做个介绍。

8.3　测试视图控件的工具
在上一节中，我们说要让Swing应用的视图层尽可能薄，理想情况下只用测试界面捕捉了用户输入，控件能正确显示内容。不过究竟要怎么做这种测试呢？这时就需要工具帮忙了。

8.3.1　为什么要用工具

为什么需要工具呢？为了回答这个问题，我们先回到刚才那个视图接口，如下所示：

public interface GreenBarView {

 public void addRunButtonListener(RunButtonListener listener);

 public void setBarColor(Color color);
}

假设我们打算用javax.swing.JPanel实现视图。我们该做些什么呢？

UI上应该有两个控件：执行测试的按钮，还有一个当绿条用的带色的框。视图单元测试最初的代码如代码清单8-3所示。

 代码清单8-3　对视图功能实现的测试

public class TestGreenBarViewImpl {

 private GreenBarView view;
 private boolean listenerReceivedClick; // ❶查验收到的事件

 @Before
 public void setUp() {
 view = new GreenBarViewImpl();
 view.addRunButtonListener(new RunButtonListener() { /*❶（以下5行）查验收到的事件*/
 public void onRunButtonClick() {
 listenerReceivedClick = true;
 }
 });
 }

 @Test
 public void viewShouldDisplayTheBarInTheGivenColor()
 throws Exception {
 view.setBarColor(Color.GREEN); // ❷模仿presenter
 // How to verify that the bar really is green?
 }

 @Test
 public void viewShouldDelegateGesturesToListener()
 throws Exception {
 // How to simulate a click on the "Run" button?
 // How to know whether the button is there at all?
 assertTrue(listenerReceivedClick); // ❶查验收到的事件
 }
}

从代码清单8-3中可以看出，虽然两处功能都测到了，但是测得不够完整。注册事件监听逻辑很容易❶，不过却没法模拟用户输入，甚至连按钮是否存在都不知道。让presenter告诉视图做显示很容易❷，但却没法验证视图显示的是否正确。

想想这个问题。实际上，我们需要访问Run按钮来触发点击事件；还需要访问显示条读取颜色。虽然可以把这些暴露成公有属性或方法直接读取，不过我们并不想这么做。除了在封装等方面的考虑外，仅仅为了测试而暴露如此多的实现细节得不偿失。

还好，我们有Swing控件树和强大的Java反射API。只要有对top-level容器（例如JFrame）的引用，就可以用反射API递归地搜索子容器，直到找到目标控件为止。

听起来挺麻烦，所以有人专门为此制作了工具。下面我们来讨论这种工具该有的功能，然后会比较两个常用的工具，接着再对其中一种进行详细讲解。

8.3.2　TDD友好的工具

测试驱动Swing控件的工具该有什么功能？首先必须能从控件树中找到特定控件进行操作。至于查找方法，则可以有多种形式。

大部分时间我们可以用控件的名字或ID来找到这个控件；而有时候，可能用控件在控件树的相对位置进行查找。有时候可能要找到拥有某个标题的弹出窗口上唯一的按钮，而有时候需要根据控件的类型（class）查找。工具支持的方法当然越多越好。

那么在操控控件方面要有什么功能？我们肯定需要点击按钮或者改变输入框的内容，但还有别的需求。有时候，除了简单的改变内容外还需要其他功能，例如一个字一个字的进行输入，验证输入框行为正确1。我们也可能需要模拟持续时间，如果用户在某个控件上持续按某键，那么控件可能会加速运行。还有鼠标，需要模拟的动作更多。

1 例如find as type。——译者注

很显然一个完整的Swing测试自动化库必须拥有很多功能。目前，有两个库正好满足我们的需要。这两个库为Abbot和Jemmy，它们都是开源的且已被广泛应用。下面我们先介绍第2个工具，这里并不打算做详细介绍，目的是大致了解API的用法。

	Jemmy

Jemmy（http://jemmy.netbeans.org/）由NetBeans团队开发，原本是为了内部使用，不过后来开放了源代码，让整个Swing开发社区受益。Jemmy提供的API能够访问到Java Swing内部。实现原理是挂接到Swing事件队列上，监听事件，通过事件确定单个控件的位置。只要拿到了控件的引用，就可以用Jemmy的API模拟键盘输入和鼠标动作或者通过控件查询前面的单元测试中输入的数据。

代码清单8-4的代码演示了如何用Jemmy实现代码清单8-3中的测试。

 代码清单8-4　用Jemmy实现对视图功能的测试

import org.netbeans.jemmy.operators.JButtonOperator;
import org.netbeans.jemmy.operators.JComponentOperator;
import org.netbeans.jemmy.operators.JFrameOperator;
　
public class TestGreenBarViewWithJemmy {
　
 private int buttonClicks;
　
 private GreenBarViewImpl view;
　
 private JFrameOperator frameOp;
　
 @Before
 public void setUp() {
 view = new GreenBarViewImpl();
 buttonClicks = 0;
 view.addRunButtonListener(new RunButtonListener() {
 public void onRunButtonClick() {
 buttonClicks++;
 }
 });
 showFrame(view); // ❶显示JFrame中的组件
 }
　
 @After
 public void tearDown() {
 frameOp.dispose(); // ❷处理frame
 }
　
 private void showFrame(Component component) { /*❶（以下7行）显示JFrame中的组件*/
 JFrame frame = new JFrame();
 frame.getContentPane().add(component);
 frame.pack();
 frame.setVisible(true);
 frameOp = new JFrameOperator(frame);
 }
　
 @Test
 public void viewShouldDisplayTheBarInTheGivenColor()
 throws Exception {
 Color desiredColor = Color.GREEN;
 view.setBarColor(desiredColor);
 JComponentOperator barOp = new JComponentOperator(/*❸（以下2行）使用operator和chooser定位组件*/
 frameOp, new NameBasedChooser("bar"));
 assertEquals(desiredColor, barOp.getBackground());
 assertEquals(desiredColor, barOp.getForeground());
 }
　
 @Test
 public void viewShouldDelegateGesturesToListener()
 throws Exception {
 JButtonOperator buttonOp = new JButtonOperator(/*❸（以下2行）使用operator和chooser定位组件*/
 frameOp, new NameBasedChooser("run_button"));
 assertEquals(0, this.buttonClicks);
 buttonOp.doClick(); // 用operator处理用户输入
 assertEquals(1, this.buttonClicks);
 }
}

在代码清单8-4中，测试类的setup方法创建了待测的视图控件❶，将其放到JFrame中显示出来。因为setup中创建了这些JFrames，所以需要在teardown方法中将其销毁❷。这种共同的底层基础代码是每个测试中都需要的，所以在写第2个Jemmy测试时要将这段代码提取到公共基类中。

那么，该如何找到想操控的控件呢？Jemmy中的component operator和component chooser可以帮忙。参照代码清单8-4，在两个测试方法中我们都创建了operator对象，传入JFrameOperator和NameBasedChooser作为参数❸。这段代码通知JButtonOperator的构造函数在给定容器（JFrame）中搜索控件，然后返回结果。在这里使用了NameBasedChooser，它会以Component# getName返回的控件名作为搜索条件。

ComponentChooser是API的关键部分之一，在代码清单8-4中，我们使用了NameBasedChooser。NameBasedChooser并不是Jemmy提供的，而是我们自己对接口做的实现，见代码清单8-5。

 代码清单8-5　Jemmy实现的基于名字的ComponentChooser

 import org.netbeans.jemmy.ComponentChooser;
　
public class NameBasedChooser implements ComponentChooser {
　
 private final String name;
　
 public NameBasedChooser(String name) {
 this.name = name;
 }
　
 public boolean checkComponent(Component c) {
 return name.equals(c.getName()); // 用名字区分需要的组件
 }
　
 public String getDescription() {
 return "Component named '" + name + "'";
 }
}

从代码清单8-5可以看出，ComponentChooser代码不多。ComponentChooser 定义了checkComponent方法，在这个方法中会检查候选控件的名称，判断是否是我们要找的。ComponentChooser接口还有另外一个方法getDescription，这个方法只是为了提供额外的信息——默认情况下Jemmy会把getDescription方法返回的信息输出到控制台上。如果在指定时间内Jemmy没有找到目标控件，则会把此信息作为错误报告。

像代码清单8-5中的基本控件查找功能应该是由Jemmy提供。我们通常用到的不同的ComponentChooser也不难实现。Jemmy虽然不错，但也可以看看其他工具。

Jemmy我已经用了挺长时间了，已经很习惯了——它很容易使用，而且一旦有了基础设施，工作起来基本不会遇到什么问题（其他工具可不一定有这么好用）。即便如此，看看其他选择也是可以的，例如下面我们要介绍的Abbot。

	Abbot

Abbot（http://abbot.sourceforge.net）不是一个新工具了。不过它的开发工作最近又活跃了起来（比如新增了对Eclipse Standard Widget Toolkit [SWT]的支持）。Abbot和Jemmy有些区别，Jemmy会监听事件队列，而Abbot利用的是底层操作系统事件。这样Abbot会更接近真东西，虽然从我的使用经验上来看区别不明显。Jemmy和Abbot更重要的区别在于，Abbot为单元测试提供了更好的支持。在代码清单8-6中我们重写了代码清单8-4的测试，一定程度上可以看出区别。

 代码清单8-6　用Abbot实现的视图测试

import junit.extensions.abbot.ComponentTestFixture;
import abbot.finder.matchers.NameMatcher;
import abbot.tester.ComponentTester;
　
public class TestGreenBarViewWithAbbot extends
 ComponentTestFixture {
　
 private GreenBarViewImpl view;
 private int buttonClicks;
　
 @Override
 protected void setUp() throws Exception {
 super.setUp();
 view = new GreenBarViewImpl();
 buttonClicks = 0;
 view.addRunButtonListener(new RunButtonListener() {
 public void onRunButtonClick() {
 buttonClicks++;
 }
 });
 showFrame(view); // ❶让Abbot把待测控件放到frame上
 }
　
 public void testViewShouldDisplayTheBarInTheGivenColor()
 throws Exception {
 Color desiredColor = Color.GREEN;
 view.setBarColor(desiredColor);
 Component bar = componentNamed("bar"); // ❷按名称定位组件
 assertEquals(desiredColor, bar.getBackground());
 assertEquals(desiredColor, bar.getForeground());
 }
　
 public void testViewShouldDelegateGesturesToListener()
 throws Exception {
 Component button = componentNamed("run_button"); // ❷按名称定位组件
 assertEquals(0, buttonClicks);
 new ComponentTester().actionClick(button); // ❸用ComponentTester仿真用户动作
 assertEquals(1, buttonClicks);
 }
　
 private Component componentNamed(String name) /*❷（以下4行）按名称定位组件*/
 throws Exception {
 return getFinder().find(view, new NameMatcher(name));
 }
}

在代码清单8-6中，我们可以了解到Abbot的主要功能。开始使用的时候，先在setup方法中创建和配置视图控件，让Abbot把待测控件放到JFrame上❶，为下面的测试做好准备。在接下来的两个测试中，我们可以看到Abbot用查找器查找控件❷。在两个测试中我们都用了名称matcher来查找Run按钮和绿条。最后在testViewShouldDelegateGesturesToListener中，我们用Abbot提供的ComponentTester模拟点击Run按钮❸。

你可能注意到了，Jemmy只提供了访问Swing控件的方法，而Abbot还提供了一些其他东西，例如供其他测试类继承的基类，这样能消除一些底层基础代码。

在这些基类中，ComponentTestFixture是最好用的，代码清单8-6的代码也用了它。除了提供了控件查找器和showFrame方法外，ComponentTestFixture还会捕捉事件分发线程抛出的异常，然后重新抛出异常让测试失败——如果让你自己写这些代码可就不好了。

总的来说，Abbot功能更强，而且开发工作还在继续。但要在这两种工具间进行选择，还是要看个人喜好。

上面我们提到了利用Passive View或Supervising Controller模式，把视图做得越薄越好。我们也看了两个测试视图用的开源工具。有了这些工具，就可以直接操控控件了。不过，我们还没有写多少视图部分的代码。下面我们来从头测试驱动一个视图，把前面讲到的技巧全用上，包括开源工具Abbot和Jemmy。

8.4　测试驱动视图组件
在本章的结束部分，我们会测试驱动出一个视图控件。确切一点是什么类型的视图控件呢？这个问题问的不错，测试驱动出一个plot map视图控件。什么是plot map？见图8-4。

图8-4　plot map控件的UI草图

我们来逐个讲解UI上的控件。首先，有一个画布控件，上面可以画一系列的点，点之间用线连接。UI的左下角有两个输入框，用来输入点的X和Y坐标。点击ADD按钮就能添加新点了。除此之外，在画布上点击某个点，此点会被移除。

下面就用TDD来开发这个界面了。首先我们会搭出MVP的基本结构，然后添加控件。先为视图添加文本框和按钮，接着添加行为。然后再添加绘图功能，让控件正确响应用户输入。

下面来分析内部实现。

8.4.1　着手设计

现在我们对要用的控件及各个控件的功能有了大致的了解。现在要着手实现了。

从技术细节分析，我们的控件应该会连到一个模型对象上。这个模型对象中有一系列的点，用X和Y坐标表示。模型的名字叫PlotMapModel，先假设已经实现过了。

我们的视图应该实现PlotMapView接口，如下所示：

public interface PlotMapView {

 void registerAdditionListener(PlotAdditionListener listener);

 void registerRemovalListener(PlotRemovalListener listener);

 void drawPlotMap(PlotMapModel model);
}

从接口上可知，视图应该把两类用户输入转给监听器（registered listeners），即presenter。这两种输入为添加点和移除点。Presenter会用drawPlotMap方法通知视图做更新。

两个监听器接口也很直观，如下所示：

import java.awt.Point;

public interface PlotAdditionListener {

 void plotWasAdded(Point plot);
}

public interface PlotRemovalListener {

 void plotWasRemoved(Point plot);
}

当添加或移除事件到达presenter后，presenter会对PlotMapModel做相应的修改，然后调用PlotMapView的drawPlotMap来同步视图。

代码清单8-7中为PlotMapModel的实现。

 代码清单8-7　简单的模型类

import java.util.*;
import java.awt.Point;

public class PlotMapModel {

 private List<Point> plots = new ArrayList<Point>();

 public void add(Point plot) {
 plots.add(plot);
 }

 public void remove(Point plot) {
 plots.remove(plot);
 }

 public List<Point> points() {
 return plots;
 }
}

在代码清单8-7中，add和remove方法由presenter调用，points方法是视图绘图的数据源。

现在我们清楚该有什么了，主要有以下3个功能。

	添加点——_加一对输入框和一个按钮，当点击按钮时会触发期望的事件。

	绘制点——_视图能在画布上画出给定的点。

	移除点——_假设画布上已经绘有一些点，点击某个点时，点会被移除。

那我们先从列表中第一条开始，在画布上添加点吧。

8.4.2　添加及操作标准控件

我们先不管那些严格的UI开发规则，先加那两个输入框和Add按钮吧。

在代码清单8-8中，我们用Abbot搭建了测试框架。

 代码清单8-8　视图功能测试的基本框架

import junit.extensions.abbot.ComponentTestFixture;
import abbot.finder.matchers.NameMatcher;
import abbot.tester.ComponentTester;
import java.awt.Point;
import java.awt.Component;

public class TestPlotMapViewImpl extends ComponentTestFixture
 implements PlotAdditionListener { // 测试类充当监听器

 private Point addedPoint; /*（以下4行）将添加的点留待测试确认*/

 public void plotWasAdded(Point plot) {
 addedPoint = plot;
 }
 public void setUp() throws Exception {
 super.setUp();
 addedPoint = null;
 PlotMapViewImpl view = new PlotMapViewImpl();
 view.registerAdditionListener(this);
 showFrame(view);
 }
}

这个测试类和刚才讨论Abbot时见到的那个差不多，最大的区别在于这次用了SelfShunt模式，让测试类本身充当测试替身，即PlotAdditionListener。代码中有一点需要注意：只要测试方法开始执行，那么一定会有一个PlotMapViewImpl在屏幕上供测试用。

下面接着写测试。我们为注册的监听器加了个测试，见代码清单8-9。如果我们往输入框里面填入数字，点击按钮，那么监听器应该会收到添加时间，也能够获取坐标点。

 代码清单8-9　输入坐标及点击Add按钮的测试

public class TestPlotMapViewImpl extends ComponentTestFixture
 implements PlotAdditionListener {
 ...
 private ComponentTester tester = new ComponentTester();

 public void testAdditionEventGetsTriggered() throws Exception {
 Point point = new Point(3, 5);
 typeIntoTextField("x_coord_textfield", "" + point.x);
 typeIntoTextField("y_coord_textfield", "" + point.y);
 tester.actionClick(namedComponent("add_button"));
 assertEquals(point, addedPoint);
 }

 private void typeIntoTextField(String name, String value)
 throws Exception {
 tester.actionKeyString(namedComponent(name), value);
 }

 private Component namedComponent(String name) throws Exception {
 return getFinder().find(new NameMatcher(name));
 }
}

先给PlotMapViewImpl做初步的实现。这时候测试还是会失败，因为Abbot找不到名为x_coord_textfield的控件。把这些控件一个个加上去，实现代码会如代码清单8-10所示。

 代码清单8-10　添加各个必要的控件后视图的实现

import javax.swing.*;

public class PlotMapViewImpl extends JPanel implements
 PlotMapView {

 public PlotMapViewImpl() {
 add(createTextField("x_coord_textfield"));
 add(createTextField("y_coord_textfield"));
 JButton addButton = new JButton();
 addButton.setName("add_button");
 add(addButton);
 }

 private JTextField createTextField(String name) {
 JTextField field = new JTextField();
 field.setName(name);
 return field;
 }

 public void registerAdditionListener(PlotAdditionListener
 listener) {
 }

 public void registerRemovalListener(PlotRemovalListener
 listener) {
 }

 public void drawPlotMap(PlotMapModel model) {
 }
}

现在PlotMapViewImpl会创建3个控件，然后将它们加到布局中。这对当前测试来说足够了。现在测试之所以会失败，是因为点击按钮后什么事情也没有发生——这其实是正确的行为，因为控件背后还没有挂接任何事件。现在就来修复测试吧。

代码清单8-11中的视图实现能够让测试通过。

 代码清单8-11　能通过我们第一个测试的视图实现

import javax.swing.*;
import java.awt.event.*;
import java.awt.Point;
　
public class PlotMapViewImpl extends JPanel implements PlotMapView {
　
 private PlotAdditionListener additionListener; // 视图用监听器处理添加的事件
　
 private JTextField xCoordField, yCoordField;
　
 private JButton addButton;
　
 public PlotMapViewImpl() {
 createWidgets();
 add(xCoordField);
 add(yCoordField);
 add(addButton);
 }
　
 private JButton createWidgets() {
 xCoordField = createTextField("x_coord_textfield");
 yCoordField = createTextField("y_coord_textfield");
 addButton = new JButton();
 addButton.setName("add_button");
 addButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 int x = valueAsInt(xCoordField);
 int y = valueAsInt(yCoordField);
 additionListener.plotWasAdded(new Point(x, y)); // 点击按钮，让注册的监听器处理触发事件
 }
　
 });
 return addButton;
 }
　
 private int valueAsInt(JTextField field) {
 return Integer.parseInt(field.getText());
 }
　
 private JTextField createTextField(String name) {
 JTextField field = new JTextField();
 field.setName(name);
 return field;
 }
　
 public void registerAdditionListener(PlotAdditionListener
 listener) {
 this.additionListener = listener; // 用于处理添加的事件的注册监听器
 }
　
 public void registerRemovalListener(PlotRemovalListener
 listener) {
 }
　
 public void drawPlotMap(PlotMapModel model) {
 }
}

在代码清单8-11中，视图类的构造函数做了两件事情：创建出子控件，将其加到屏幕中，这倒没什么特别的。更值得注意的是通过在按钮的ActionListener中提取文本字段的数据，让Add按钮来触发在PlotAdditionListener上注册的事件。需要注意的是代码清单8-11的代码假设只会有一个监听器存在（事实也确实是这样）。

在为Add按钮实现ActionListener时，我发现用户也许会给坐标输入框填入非数字的值。这种行为应当避免，我先将其加到任务列表里吧。我想或许可以让Add按钮只在两个坐标值都有效时才能点击。点击之后，两个坐标输入框的值应该清空。这个任务就交给你了，我们现在来做另一件事：绘图。

8.4.3　绘图

从控件库里东拖西拽地画出个界面和从头造一个控件完全不是一回事。造控件意味着要自己绘制控件在屏幕上显示的效果，这正是我们接下来要做的事情：在画布上绘出plot map。

我们先抬起头来看看。现在PlotMapViewImpl已经有了一些输入框和一个能触发监听器添加事件的按钮。不过视图类在绘制PlotMapModel时还什么都没做。整个控件完成后，我们应该能够看到一个画着点，点之间有直线连接的画布。绘图一直都不是我的强项，如果想一步做完基本不可能，所以还是分治（divide and conquer）吧。

	分解问题

我现在在想，或许我们应该把绘图的责任都划分到一个单独的画布类里去，只要PlotMapViewImpl把绘图的请求转发给画布对象就可以了。也就是说不把画布相关的细节和其他控件混在一起，而是让PlotMapViewImpl包含一个PlotMapCanvas接口的引用，这个接口目前可以清除掉。这样把画布封装成一段独立的代码让测试也更容易了。

画布这部分还没动手呢，现在来认真实现视图和画布间的交互吧。代码清单8-12中的测试描述了视图和画布控件应该有的交互。

 代码清单8-12　测试视图与画布控件的交互

public class TestPlotMapViewImpl extends ComponentTestFixture
 implements PlotAdditionListener {
 ...
 private PlotMapCanvasStub canvas; // ❶对画布使用测试替身
　
 public void setUp() throws Exception {
 ...
 canvas = new PlotMapCanvasStub(); // ❶对画布使用测试替身
 view = new PlotMapViewImpl() {
 @Override /*❷（以下4行）视图用此方法创建画布*/
 protected PlotMapCanvas createCanvas() {
 return canvas;
 }
 };
 }
　
 public void
 testViewPassesModelToSeparateCanvasObjectForDrawing()
 throws Exception {
 Point p1 = new Point(1, 3);
 Point p2 = new Point(2, 1);
 Point p3 = new Point(5, 4);
 PlotMapModel model = new PlotMapModel();
 model.add(p1);
 model.add(p2);
 model.add(p3);
 view.drawPlotMap(model);
 assertEquals(Arrays.asList(p1, p2, p3),
 canvas.plottedPoints);
 }
}

在代码清单8-12中，我们用测试替身PlotMapCanvasStub来捕捉交互❶。通过覆盖protected的工厂方法，测试时就能够用测试替身而非真实对象了❷。Fake画布要能记录下来需要画的数据（见代码清单8-13），这样，在测试中就可以拿记录下的数据和期望的数据做对比了。

 代码清单8-13　PlotMapCanvas 的测试替身

public class PlotMapCanvasStub implements PlotMapCanvas {
　
 public List<Point> plottedPoints = new ArrayList<Point>();
　
 public void plot(Point point) {
 plottedPoints.add(point);
 }
}

现在，测试直指缺失的功能——把绘图的任务交给视图的画布控件去做。先挑简单的做，代码清单8-14的代码正好让测试通过。

 代码清单8-14　让视图把模型传给独立的画布对象

public class PlotMapViewImpl extends JPanel implements PlotMapView {
 ...
　
 protected PlotMapCanvas createCanvas() { /*（以下3行）需要做代码编译*/
 return null;
 }
　
 public void drawPlotMap(PlotMapModel model) {
 for (Point point : model.points()) { /*（以下3行）要求画布画出模型的点*/
 createCanvas().plot(point);
 }
 }
}

敏锐的读者们可能已经发现了代码清单8-14中的一些有趣的东西。首先，createCanvas方法返回了null——目前这样足够了。在产品代码中一定是要创建画布对象的，但是现在还不用。

其次，每画一个点createCanvas都会被调用一次。这样显然是不对的（测试之所以能通过，是因为createCanvas方法每次都返回同一个对象），我的目的是让测试显式地说明所有的元素都该画在同一个画布上。

代码清单8-15添加了一个测试指出了这一点。

 代码清单8-15　显式指定一个视图只应创建一个画布

public void testViewCreatesItsCanvasJustOnce() throws Exception {
 final MutableInt canvasesCreated = new MutableInt (); // ❶计数加
 view = new PlotMapViewImpl() {
 @Override
 protected PlotMapCanvas createCanvas() {
 canvasesCreated.increment(); // ❶计数加
 return new PlotMapCanvasStub();
 }
 };
 PlotMapModel model = new PlotMapModel();
 model.add(new Point(1, 1));
 view.drawPlotMap(model);
 view.drawPlotMap(model);
 assertEquals(1, canvasesCreated.intValue()); // ❷只会创建一个画布
}

每次调用createCanvas时都增加计数器对象的计数❶，然后再调用几次视图的drawPlotMap方法，我们可以验证视图只会创建一个画布❷。

在实现画布前，还有什么要做的？至少那个createCanvas方法不能继续返回null了，应该返回真实的对象。另外在drawPlotMap方法中也有要改的，现在每次画新图时没有擦除旧图！我们应该给PlotMapCanvas加个clear方法，PlotMapViewImpl在重画模型时应该先调用它。这些工作我们就不一起做了，你自己去搞定吧，然后我们一起实现画布对象！

	测试尺寸

通常，做一件事情可以有很多入手点。开发一个有绘图功能的控件PlotMapViewImpl，或许可以从画布尺寸入手。首先，我们先给画布固定尺寸。代码清单8-16中的代码把画布尺寸定为200×100像素大小。

 代码清单8-16　测试画布尺寸

public class TestPlotMapCanvasImpl {
　
 @Test
 public void testDimensionsShouldBeAutomaticallySet()
 throws Exception {
 Component canvas = new PlotMapCanvasImpl();
 assertEquals(new Dimension(200, 100), canvas.getSize());
 }
}

简单干净，实现代码也一样，见代码清单8-17。

 代码清单8-17　第一个典型的画布类

public class PlotMapCanvasImpl
 extends Component implements PlotMapCanvas {
　
 public PlotMapCanvasImpl() {
 setSize(200, 100);
 }
　
 public void plot(Point point) {
 }
}

代码清单8-17中的代码也没什么特别的。在构造函数中，我们为控件设置了尺寸，另外还提供了接口方法的默认实现。在测试中我们通过java.awt.Component来引用画布组件，所以现在就直接从这个类继承了。

测试通过了，但不应该通过，为什么？因为设置了Component的尺寸并不代表控件显示出来就一定是这个大小。这就是Swing知识派上用场的时候了，如果没有这些知识，那么只有在运行程序时才能用肉眼发现这个问题。对于控件的真实尺寸，我们可以通过对比控件的尺寸和边界来发现问题（见代码清单8-18）。这个测试说明视图尺寸根本不是固定的。

 代码清单8-18　对比尺寸和边界

public class TestPlotMapCanvasImpl extends ComponentTestFixture { // 使用Abbot的基类渲染控件
　
 @Test
 public void testDimensionsShouldBeAutomaticallySet()
 throws Exception {
 Component canvas = new PlotMapCanvasImpl();
 showFrame(canvas); // 使用Abbot的基类渲染控件
 assertEquals(new Dimension(200, 100), canvas.getSize());
 assertEquals(canvas.getSize(),
 canvas.getBounds().getSize());
 }
}

要解决这个问题，最简单的办法就是换掉java.awt.Component，改从java.awt.Canvas继承。这个改动太小了，新代码就不列在这里了。

下步该做什么功能了？画布的背景色应该是最容易确定的了，我喜欢白色的。

	确定颜色

我们期望控件能有个整洁的白色背景。这应该不难，对吧？代码清单8-19中的测试说明这确实不难。

 代码清单8-19　为控件背景色添加另一个测试

public class TestPlotMapCanvasImpl extends ComponentTestFixture {
　
 private Component canvas;
　
 @Override
 protected void setUp() throws Exception {
 super.setUp();
 canvas = new PlotMapCanvasImpl();
 }
　
 @Test
 public void testDimensionsShouldBeAutomaticallySet()
 throws Exception {
 showFrame(canvas);
 assertEquals(new Dimension(200, 100), canvas.getSize());
 assertEquals(canvas.getSize(),
 canvas.getBounds().getSize());
 }
　
 @Test
 public void testBackgroundColorIsWhite() throws Exception {
 assertEquals(Color.WHITE, canvas.getBackground());
 }
}

从代码中可以看到一处重构，我们为画布控件添加了一个field，会在setup方法中给其赋值。让测试通过依旧很容易，见代码清单8-20。

 代码清单8-20　在控件的构造函数中设置背景

public class PlotMapCanvasImpl
 extends Canvas implements PlotMapCanvas {
 ...
　
 public PlotMapCanvasImpl() {
 setSize(200, 100);
 setBackground(Color.WHITE);
 }
 ...
}

比起这个简单的实现，我们更感兴趣的是如何验证plots被正确地画在画布上了，因此要测试真实的图形输出。

	测试图形输出

测试图形输出有些麻烦。虽然有许多种方法，但并不是每种都是好方法。我们可以给控件传入一个java.awt.Graphics测试替身，然后验证交互正确。这样可以，但是却暴露了实现细节。这虽然是单元测试，测试和实现有紧耦合还算正常，但是针对这种非海量图像数据，只需要检测几个像素的情形，还有更好的办法。

刚才提到的办法是：把控件渲染到缓存上，从缓存上提取出一幅位图raster，然后在此基础上进行测试。听起来很麻烦，不过确实可行。在考虑像素级的测试前，先想办法把控件渲染到缓存上吧。

要做到这点有多种办法，代码清单8-21是我所常用的。

 代码清单8-21　从Swing控件中提取位图的工具类

import java.awt.Color;
import java.awt.Component;
import java.awt.Graphics2D;
import java.awt.image.BufferedImage;
import java.awt.image.Raster;
　
public class Bitmap {
　
 public static Raster of(Component c) throws Exception {
 BufferedImage image = new BufferedImage(c.getWidth(),
 c.getHeight(), BufferedImage.TYPE_INT_RGB);
 Graphics2D graphics = image.createGraphics();
 graphics.setColor(Color.WHITE);
 graphics.fillRect(0, 0, c.getWidth(), c.getHeight());
 c.paint(graphics); // ❶让控件在缓冲上绘制自己
 graphics.dispose();
 return image.getRaster(); // ❷从缓冲提取raster
 }
}

解决问题的关键在于创建一个内存缓冲（java.awt.image.BufferedImage）❶，控件可以在此缓冲上绘制自己。绘制完后，我们就可以从图片中提取出位图raster进行测试了❷。

现在，费不了多少功夫我们就能写出测试验证所画点在正确的坐标上了。代码清单8-22中正是这样一个测试——这个测试验证了我们画点的那个像素周围像素的颜色。

 代码清单8-22　验证画布绘图内容的测试

public class TestPlotMapCanvasImpl extends ComponentTestFixture {
 ...
　
 @Test
 public void testPlotIsDrawnOnScreen() throws Exception {
 canvas.plot(new Point(2, 2));
 Raster raster = Bitmap.of(canvas); // ❶捕捉raster
 Pixel.in(raster).at(2, 2).shouldBe(Color.BLACK); /*❷（以下2行）验证raster中某个像素的颜色*/
 Pixel.in(raster).around(2, 2).shouldBe(Color.WHITE);
 }
}

在代码清单8-22中，我们用了很多工具类让测试变得很紧凑。首先，我们用代码清单8-21中见过的Bitmap类捕捉了控件的位图❷，然后转化成raster对象。然后用了另外一个未介绍过的工具类来验证raster中某个像素的颜色❶。在坐标[2,2]处画点后，我们期望除此点外，其他像素都是白色。

有了这个测试，我们终于可以动手实现PlotMapCanvasImpl的paint方法了，见代码清单8-23。

 代码清单8-23　绘图的粗略实现

public class PlotMapCanvasImpl
 extends Canvas implements PlotMapCanvas {
　
 private List<Point> plots = new ArrayList<Point>();
 ...
　
 @Override
 public void paint(Graphics g) {
 g.setColor(Color.BLACK); // ❶用黑色线
 for (Point p : plots) { /*❷（以下3行）给每个点的像素着色*/
 g.drawLine(p.x, p.y, p.x, p.y);
 }
 }
}

测试通过了，点也画在屏幕上了。我们画了一条黑色的线，线的起点和终点都是同一个点❶。之所以要画线而非点，因为Graphics貌似没有直接给像素着色的功能。另外，如果你对Swing的API还不熟，注意要把颜色设为黑色，这样Graphics才知道drawLine方法该用什么颜色绘图❷。

现在我们还需要画线——连接画布中各个点，开始干吧。

	测试模式

已经做到哪了？我们已经在屏幕上画出点了，下一步需要用线连接这些点。那么，我们该如何检测画布对象画出的点之间的连线呢？

我们当然可以和代码清单8-22中检测那2个点一样，检查142个点的颜色，验证两个坐标点间的直线上每个像素都是黑色。这个测试的缺点在于，测试方法会过长。我们当然不期望测试方法有几百行，测试应当简单些。我至少能想到两种方法比检查直线所有的142个像素要简单：

	把线变短

	写算法找出连线

如果能设计出足够简单的情形——例如一条非常短的线——那么我们就可以在测试中直接检测特定像素了。如果要设计出一个算法找出两点间的连线，那么我们实际是在花钱和时间实现一项功能：给定起始点和结束点，判断两点间连线上的像素是否被着色了。因为算法可能会变得很冗长，而要给出一个简单的测试用例又相对容易，所以我们还是考虑上面第一种方法吧。代码清单8-24中的测试验证了画布会在两点间连一条直线。

 代码清单8-24　测试点之间有连线

public class TestPlotMapCanvasImpl extends ComponentTestFixture {
 ...
　
 @Test
 public void testPlotsShouldBeConnected() throws Exception {
 canvas.plot(new Point(2, 9));
 canvas.plot(new Point(5, 6));
 Raster raster = Bitmap.of(canvas);
 Pixel.in(raster).at(2, 9).shouldBe(Color.BLACK); /*（以下4行）人工检验计算的坐标*/
 Pixel.in(raster).at(3, 8).shouldBe(Color.BLACK);
 Pixel.in(raster).at(4, 7).shouldBe(Color.BLACK);
 Pixel.in(raster).at(5, 6).shouldBe(Color.BLACK);
 }
}

在代码清单8-24中，我们还是使用了Pixel工具检查单个像素的颜色。在这里，我们硬编码了点[2,9]和[5,6]之间的像素，为[3,8]和[4,7]。测试正确地失败了，抱怨说中间的像素不是黑色的，现在我们就可以连线了，见代码清单8-25。

 代码清单8-25　画点之间的连线

public class PlotMapCanvasImpl
 extends Canvas implements PlotMapCanvas {
 ...
　
 @Override
 public void paint(Graphics g) {
 g.setColor(Color.BLACK);
 Point previous = null;
 for (Point current : plots) {
 if (previous == null) { /*❶（以下3行）第一个点前面没有点*/
 previous = current;
 }
 g.drawLine(previous.x, previous.y, /*❷（以下2行）在前一个点和当前点之间画一条线*/
 current.x, current.y);
 previous = current; // ❸为下一个循环做准备
 }
 }
}

代码清单8-25中的代码用画点的drawLine方法给点之间连线。这次我们在一个循环中给previous点和current点之间依次连线❷。第一个点前没有点，所以previous点和current点是同一个点❶。而余下的各点都有previous点，因为每次画线后都会更新previous点的值❸。

画图部分基本完成了，我们来处理代码清单里的第3个。也是最后一个问题：响应用户操作（即鼠标点击操作），移除画布上的点。

8.4.4　给点添加行为

我们期望画布能够捕获鼠标点击动作，然后把事件通知给容器（即PlotMapViewImpl）。说的详细些，我们期望在鼠标点击坐标点后，画布能够响应点击事件。那么该怎么做？

首先需要某种回调机制，这样视图就可以为鼠标点击事件注册处理逻辑了。为此，我们创建了PointEventListener接口：

public interface PointEventListener {

 void onPointEvent(Point point);
}

视图应该能为PlotMapCanvas注册PointEventListener。为此我们可以为PlotMapCanvas接口添加addRemoveListener方法，如下所示：

public interface PlotMapCanvas {

 void plot(Point point);

 void addRemoveListener(PointEventListener listener);
}

必需的接口都有了，下面来写个测试吧。

	模拟及响应鼠标点击

我们期望控件能响应鼠标点击。为了验证功能的正确性，需要模拟鼠标点击。幸好画图类所继承的java.awt.Component类带有dispatchEvent方法。这个方法能模拟许多鼠标事件，包括我们需要的左击。

代码清单8-26为下一个测试。测试中模拟了鼠标点击，注册了一个测试替身来监听移除事件。

 代码清单8-26　测试用户操作的处理

public class TestPlotMapCanvasImpl extends ComponentTestFixture {
　
 private PlotMapCanvasImpl canvas;
　
 ...
　
 @Test
 public void
 testPlotsShouldReactToClicksByTriggeringRemoveEvents()
 throws Exception {
 final List<Point> removedPoints = new ArrayList<Point>();
 canvas.addRemoveListener(new PointEventListener() { /*❶（以下5行）注册移除监听器*/
 public void onPointEvent(Point point) {
 removedPoints.add(point);
 }
 });
 Point point = new Point(5, 20);
 canvas.plot(point);
 canvas.dispatchEvent(new MouseEvent(canvas, /*❷（以下5行）模拟鼠标点击动作*/
 MouseEvent.MOUSE_CLICKED,
 System.currentTimeMillis(),
 MouseEvent.BUTTON1_DOWN_MASK,
 point.x, point.y, 1, false));
 assertTrue(removedPoints.contains(point));
 }
}

代码清单8-26中的测试会模拟鼠标点击画布上的一个点，验证监听器能收到正确的事件。测试中首先为PointEventListener接口创建了一个匿名实现❶，这个实现会把收到的Point参数记录在List中。注册完伪监听器后，测试用dispatchEvent方法模拟了一个鼠标点击动作❷。

测试失败了，这在意料之中。我们需要为画布的addRemoveListener添加实现。代码清单8-27中为PlotMapCanvasImpl的实现。

 代码清单8-27　画布把鼠标点击事件传给了监听器

public class PlotMapCanvasImpl
 extends Canvas implements PlotMapCanvas {
 ...
　
 public void addRemoveListener(final PointEventListener
 listener) {
 addMouseListener(new MouseAdapter() {
 public void mouseClicked(MouseEvent e) {
 listener.onPointEvent(e.getPoint());
 }
 });
 }
}

在代码清单8-27中，画布注册了一个匿名MouseAdapter实现，把鼠标点击转化成了对PointEventListener的调用。

因为目前画布会把每个点绘成单个像素，而这个点以后或许会被修改，因此我们可以把MouseEvent中的点作为参数传入。

在写MouseAdapter的实现时还发现了一个问题。目前所有的鼠标点击都能触发移除事件，实际上应该只有点击在点上，才会触发移除事件。

	让验证更精确些

代码清单8-28中的代码修正了行为，而且经过重构后，条理也更清晰了。

 代码清单8-28　测试只有特定的鼠标点击操作才会移除点

public class TestPlotMapCanvasImpl extends ComponentTestFixture {
 ...
 private List<Point> removedPoints; // ❶为移除事件注册伪监听器
　
 @Override
 protected void setUp() throws Exception {
 super.setUp();
 removedPoints = new ArrayList<Point>();
 canvas = new PlotMapCanvasImpl();
 canvas.setRemoveListener(new PointEventListener() { /*❶（以下5行）为移除事件注册伪监听器*/
 public void onPointEvent(Point point) {
 removedPoints.add(point);
 }
 });
 }
　
 ...
　
 @Test
 public void testClickOnPlottedPointShouldTriggerRemoveEvent()
 throws Exception {
 Point point = new Point(5, 20);
 canvas.plot(point); /*❷（以下3行）点击点触发移除事件*/
 simulateMouseClickAt(point.x, point.y);
 assertTrue(removedPoints.contains(point));
 }
　
 @Test
 public void testClickOnNonPlottedPointShouldBeIgnored()
 throws Exception {
 canvas.plot(new Point(100, 50)); /*❸（以下3行）忽略对未画点的点击*/
 simulateMouseClickAt(20, 30);
 assertTrue(removedPoints.isEmpty());
 }
　
 private void simulateMouseClickAt(int x, int y) {
 canvas.dispatchEvent(new MouseEvent(canvas,
 MouseEvent.MOUSE_CLICKED,
 System.currentTimeMillis(),
 MouseEvent.BUTTON1_DOWN_MASK, x, y, 1, false));
 }
}

和代码清单8-26中的代码一样，我们给PlotMapCanvasImpl注册了一个假的PointEventListener❶。不过这次不仅要测试“点击点”时会触发移除事件❷，还要测试“点击非点”时，不会引发移除事件❸。

好的，测试失败了，因为还没有把当前点和PlotMapCanvasImpl中保存的已绘制的点作对比，判断点是否被绘制过。代码清单8-29中为我们的实现，还算简洁。

 代码清单8-29　将鼠标点击的点与保存的已绘制的点作对比

public class PlotMapCanvasImpl
 extends Canvas implements PlotMapCanvas {
 private List<Point> plots;
 ...
　
 public void setRemoveListener(final PointEventListener
 listener) {
 addMouseListener(new MouseAdapter() {
 public void mouseClicked(MouseEvent e) {
 Point point = e.getPoint();
 if (plots.contains(point)) { // 只处理画点
 listener.onPointEvent(point);
 }
 }
 });
 }
}

为避免鼠标“点击非点”时触发移除事件，代码清单8-29并没有改动太多代码。我们检查了MouseEvent中带的Point对象，看是否与已经绘制过的点相符。

我们的画布对象有了画点、连线以及给视图传回移除事件的基本功能。虽然还有许多有趣的东西能做（例如把已绘制的点画成一个小精灵，而不是一个小像素），不过我们不会继续做这个例子了，是因为剩下的工作还够做很多小时，而且我相信你对组织和测试驱动Swing控件已经有不少自己的想法了。

下面对本章作个简短的总结，然后开始第三部分吧。第三部分中会从验收测试驱动开发的新高度介绍TDD！

8.5　小结
在本章中，我们学到了如何测试及测试驱动Swing代码。开始我们讨论了如何测试内部基础代码，工具及控件间的交互和控件自身逻辑。因为渲染和布局总是要通过视觉来验证，而且测试成本很高，所以通常都不测。

为了让需要测试的部分更好测些，我们学习了几个设计模式。MVP模式的两个变体Supervising Controller和Passive View把大部分的逻辑都移出了视图层，放在了更好测的其他部分中。

有了这些模式，我们已经可以测到大部分的逻辑了，不过视图中还会剩下些逻辑。为了完成这部分逻辑的测试，我们了解了测试可视化Swing控件的技术及工具。我们试用了两款工具——Jemmy和Abbot，发现这两个工具都很好用，选择哪个纯属个人喜好。

最后，我们测试驱动出了一个简单的视图控件的可视化部分。这个控件包含标准控件，例如文本框和按钮，也包括自定义的图形。我们看到了如何把由模型变化，或者用户操作引起的控件内的交互行为一步步添加到实现中。我们也看到了如何方便简单地测试自己绘制的控件。秘诀在于把问题分解成小部分，逐个解决。

至此，本书第二部分就结束了。在第三部分中，我们不再关注细节的、面向代码的TDD了，而会转向研究面向产品和整个团队的ATDD（验收测试驱动开发）。

第三部分　基于ATDD构建产品
在掌握了使用测试驱动开发的技术测试各种Java代码之后，第三部分将把注意力转到测试驱动开发的另一个层面——验收测试驱动开发上。第9章除介绍ATDD外还会讲几个用户案例，以及什么是验收测试和如何做验收测试。另外，还将讨论一些相关的工具。第10章讲述运用开源的Fit框架，以方便的列表格式来实现可执行的验收测试。第11章将学习把可执行的验收测试运用到被测试系统的不同策略。

学习完第11章之后，你会掌握测试驱动开发应用的正确方法和各种策略。然而，真正采用这种技术恐怕必须所有团队成员同心同德才行。第12章为此给出了建议和技巧。毕竟，学以致用嘛。

本部分内容

	第9章　解析验收测试驱动开发

	第10章　用Fit创建验收测试

	第11章　执行验收测试的策略

	第12章　TDD应用

第9章　解析验收测试驱动开发

 在航空领域中，如果一个设计没有解决“这东西该如何测试”这个问题，那么连校阅步骤都通不过。

 ——Glen B. Alleman，Lewis OEBPS/Images/image00294.jpeg
v [MyProject
v [src
v [@d
v [deltas

[8) 00001_create_order_table.sql
[#) 00002_create_order_items_table.sql
[%) 00003_create_customer._table.sql
(%) 00004_add_email_address_to_customer_table.sql

OEBPS/Images/image00293.jpeg
B R ARED SessionFactory

Session

OEBPS/Images/image00292.jpeg
<<abstract>>
JdbcDaoSupport

o Daoimol S <<interface>>
ersonDaolmp PersonDao

OEBPS/Images/image00291.jpeg
1. Gldess
2. PRI

3. LA

4. FRIEAR

6. fRZSHH RSy
7. REHCTR

5. AEBARIAT R R

OEBPS/Images/image00290.jpeg
<<interface>> FEALL
PersonDao

—————— Person

RealPersonDao FakePersonDao

OEBPS/Images/image00334.jpeg
AG2

OEBPS/Images/image00289.jpeg
)itz

FALE

JDBC API

FEAMAESE

[

JDBCYK 5l

OEBPS/Images/image00333.jpeg
EX

OEBPS/Images/image00288.jpeg
VelocityBibi

Hello, $name. Would you like to
try test-driving some $adjective
Velocity templates?

2 ik

name="Reader”

AR
Hello, Reader. Would you like to

try test-driving some spiffy
Velocity templates?

OEBPS/Images/image00332.jpeg
ARSI ﬁ%ﬂﬂfﬂﬂ'}i‘ﬂ‘hﬁ

i

j
e H ik 1 }— Wiz 4 }— Wik s '_..1‘ Wttt i——m:—;—— mmt|-— it 3 ‘

]

OEBPS/Images/image00287.jpeg
ServietZ 3%

HBE T HIWebH

b Gt D~]

Jsp

OEBPS/Images/image00331.jpeg
Wob Resus 11025099800 forTas-Drven Dvelopment, (.18 seconce)

Sponsored Liks.
% o e s 53, 7 ol D o wr e coo 8 works. .My
(Gase &t i e e Ca30030 DD, o porna Tewt Orven-
T goseayeras ot o Caceas e ot Hovisa Jova st s

.- wik fr90 encycogedia WAt
Tos Dien Deveapment (10D} & comper prssamn oo 2t & safarwatr
s - Praciorars onghaage 1l st diven e Pekekel L e
K Dai i iT s drven ovopment- 418 Cotres S sases | require *rubygens’

require *saforimatic®

bronser = Notir::Safart.new
broser. gotoC"htp: //mw. google. con”)
bromser_text_field(:nane, “a").set("Test-Oriven Development”

oouar wsss.
i o T3 8 ar 80T Cah - S
B EEEEE—— i

T T Y T o e e s

OEBPS/Images/image00286.jpeg
A E LR ATLAE F el

oy wILs
H el

OEBPS/Images/image00330.jpeg
B ki

OEBPS/Images/image00285.jpeg
LoginController

<property nam

</bean>

<bean i
<property name="host" value='
<property name="basedn’ value:

2.34.56.78" />

I

</bean>
/beans>

+ setAuthenticator(Authenticator)
-

login” class="com.tddinaction.LoginController'>

uthenticator”>
<ref bean="ldapAuthenticator” /> Maps to
<Jproperty> / ‘setAuthenticator

"IdapAuthenticator” class="com.tddinaction.LdapAuthenticator">

<<interface>>
Authenticator

+ isValidLogin(String, String)

L
LdapAuthenticator

+ isValidLogin(String, String)

OEBPS/Images/image00329.jpeg

OEBPS/Images/image00328.jpeg
KEBS IRBEFAPL | - - - - - - -

— /N 4y
T S 2%
APIijj[]

OEBPS/Images/image00327.jpeg
WRGLEERR

| R "

Bl

OEBPS/Images/image00326.jpeg
Web
M55

OEBPS/Images/image00325.jpeg

OEBPS/Images/cover00339.jpeg
MM EREREtMs | | ITTTIIY:

Test Dr IVeN Practical TDD and Acceptance TDD for Java Developers

MW Z WA

[35] Lasse Koskela =&
FM F

% N B v i i ik

POSTS & TELECOM PRESS

OEBPS/Images/image00284.jpeg
com.acme.CustomServiet

protected void doGet(...) {}

protected void doPost(...) {}

protected void doPut(...){}

‘protected void doHead(...) {}

OEBPS/Images/image00283.jpeg
[BELITES

—_—

2. $AT LS5 4,
pPRi% e

3. HHLE

HU KR e

OEBPS/Images/image00282.jpeg
A

OEBPS/Images/image00281.jpeg
o
& =
w HE
B
oS
-
T
mH
2

OEBPS/Images/image00280.jpeg
2. BNk A

5. FAAG

Anfap AL RR it 1A

OEBPS/Images/image00324.jpeg

OEBPS/Images/image00279.jpeg
R BAIET

fil% F iR

OEBPS/Images/image00323.jpeg
LR b— LN
< >
WEMEEE I AY |

OEBPS/Images/image00278.jpeg
x5

FEhBRE (K i

0

g -

RIEA

&

R

OEBPS/Images/image00322.jpeg

OEBPS/Images/image00277.jpeg
ClassUnderTest SingletonClass

+doSomethingWeWantToFake()
+ doSomethingElseWeWantToFake()

+methodinvokedByTest()

public void methodinvokedByTest() {

SingletonClass.doSomethingWeWantToFake();

) public void methodinvokedByTest() {

SingletonClass s=SingletonClass.getinstance();
s.doSomethingWeWantToFake();

OEBPS/Images/image00321.jpeg
setup review data

title edition review date |review text

JUnit Recipes 2005-01-05|First review of JUnit Recipes
JUnit Recipes 2005-08-10{Second review of JUnit Recipes|
Spring in Action 2005-05-28 Review of Spring in Action
Ajax in Action 2006-02-08 [Most recent review

===]=

OEBPS/Images/image00276.jpeg
A

OEBPS/Images/image00320.jpeg
com.tddinaction.fit.fixtures ReviewsDoFixture!

setup book data

title edition|ISBN authors

JUnit Recipes |1 1932394230|1.B. Rainsberger, Scott Stirling

Spring in Action|1 1932394354 Craig Walls, Ryan Breidenbach

Ajax in Action |1 1932394613 | Dave Crane, Eric Pascarello, Darren James|

setup review data

lilleledition review date|review text

g0 to front page

ensure text present|Found reviews for 0 books|

setup review data

title edition|review date |review text

JUnit Recipes |1 2005-01-05 |First review of JUnit Recipes
JUnit Recipes |1 2005-08-10|Second review of JUnit Recipes|
Spring in Action|1 2005-05-28 |Review of Spring in Action
Ajax in Action |1 2006-02-08 [Most recent review

TER, AR EREICT, (BP0 R A4

20 to front page

ensure [text present (Found reviews for 3 books|
ensure [text present|JUnit Recipes
ensure|text present Spring in Action

ensure [text present|Ajax in Action

A B A LR E B HRFIAE T B LA 5 2 0 i SR i

verify that|Ajax in Action |is before|JUnit Recipes
verify that[JUnit Recipes |is before|Spring in Action|

OEBPS/Images/image00275.jpeg

OEBPS/Images/image00319.jpeg
transfer

100,00

dollars from

AC0001

to

AC0002

OEBPS/Images/image00318.jpeg
transfer

100,00

AC0001

AC0002

OEBPS/Images/image00317.jpeg
In order to illustrate the use of the ActionFixture as well, consider the following table:

fit. ActionFixture

start | com.tddinaction.fit.fixtures.CalculatorActionFixture

check |display

0

enter |input

1

check |display

1

press |plus

check |display

enter |input

check |display

press |equals

check |display

2

— i

OEBPS/Images/image00316.jpeg
+

@ file://].../calculator/example.htm |~/ Q- Google

‘We can also use RowFixtures to verify that the Calculator is recording a history of r
operations. This table verifies that the Calculator only remembers the five last
operations (remember that we started with "5+3". That shouldn't be part of the
rendered history because we've already performed five operations after that one):

com.tddinaction. fit.fixtures.CalculatorHistoryFixture

left l operator

right

S5
5
5
5
S
5

wlo[o|w ==

W«»(

OEBPS/Images/image00315.jpeg
st document illustratin... between fixtures
¥ file:///.../calculator/example.htm

;Q- Google I
"

‘We can also use RowFixtures to verify that the Calculator is recording a
history of operations. This table verifies that the Calculator only
remembers the five last operations (remember that we started with "5+3".
That shouldn't be part of the rendered history because we've already
performed five operations after that one):

com.tddinaction fit fixtures.CalculatorHistoryFixture
left |operator | right

b5 - 3

5 * 3

5 |/ 3

5 * 0

5 |/ 0

|
S
v
E— I

OEBPS/Images/image00274.jpeg
figz2inl

OEBPS/Images/image00273.jpeg
<51 ThE 519hiie Templated | $EIhE
» »——
‘ i i i i

OEBPS/Images/image00272.jpeg
Templated | $EIhE

ated | §EThiE
EEETTEN
AT l Phitihe ‘
—

Templated | $ThRE

o))

OEBPS/Images/image00271.jpeg
iPa:kagaEprrer‘Hierarmy‘};(u).hit 8N\ SO | QBT a:
Finished after 0,02 seconds |

Runs: 1/1 B Errors: 0O 8 Failures: 1
|

8% Failures | . Hierarchy |
- testOnePlaceholder - tddinaction. TestTemplate

Failure Trace \i- -
junit.framework.ComparisonFailure: expected: <Hello, Reader > but was: <null>
at tddinaction. TestTemplate. testOnePlaceholder (TestTemplate, java:10)

at sun.reflect.NativeMethodaccessorImpl. invokeO(Native Method)

at sun.reflect.NativeMethodaccessorImpl. invoke (Unknown Source)

= at sun.reflect.DelegatingMethodAccessorImpl.invoke (Unknown Source)

OEBPS/Images/image00270.jpeg
LI

Gy

Hty

OEBPS/Images/image00314.jpeg
test document illustr...ween fixtures and
¥ file:///.../calculator/example.htm

This is narrative text explaining what the tests in this document are all about. We
can write anything we want here; it's completely ignored by Fit itself.

com.tddinaction.fit fixtures.CalculatorFixture

left right operator result() {
.
v

5 3 + 8 expected

2.0 actual

5 3 - 2 expected

8.0 actual

5 3 » 15

S 3 / 1.6666666666666667

The above table is a test interpreted by Fit according to the rules embedded into
the header row cell values and the fixture class' inheritance hierarchy.

OEBPS/Images/image00269.jpeg
ARG

o — —
it
BEAH > - -

oy A

(@) FFBN GUIE IR SRR R R

OEBPS/Images/image00313.jpeg
it IFE T 2R SR A B

AT ianfol (R Ferh & TIIET

‘com tddinaction fit fixtures CalculatorFixtures

CABE 5 55 R A ST R WIF it 108
TR AHR 440005 AR P S A

left right operator result().
5 3 + 8
5 3 g 2
X . 15
Bk, P IRk b T e |/ 1.666
o A SR sl

OEBPS/Images/image00268.jpeg
MREE

2]E]

OEBPS/Images/image00312.jpeg
com.tddinaction. fit.fixtures. CalculatorFixture

left right operator result()

5 3 + 8

5 3 - 2

5 3 K 15

5 3 / 1.6666666666666667

OEBPS/Images/image00267.jpeg
+ method ()

ZHE)T
- delegate [+ method ()
& method ()

OEBPS/Images/image00311.jpeg
0006 ¢ example.htm
77 ST NN PR S T ST . P

Sample Fit test document illustrating the relationship between fixtures
and documents

This is namative text explaining what the tests n this document are all about. We can write anything we.
want here; s completely ignored by Fit itself.

com.ddinaction fit fixtures CalculatorFixture

left right ‘operator resultQ)
14 |s 3 + 8
1[5 3 - 2
3 |s 3 . 15
s 3 . 1.6666666666666667

The above table is a test interpreted by Fit according to the rules embedded into the header row cell values
and the fixture class' inheritance hierarchy.

We can also include multple test ables in a single document. In this case, we've used the same fixture
class, but it could just as well be some other fixture.

T

com.ddinaction fitfixtures CaiculatorFixture

T [en right operator [rsuo
ENE 0 . [o
ENE 0 1 [eror

Fit wil interpret and execute the tables it finds in a document in the order it encounters them.

p— ——]

SN =]

OEBPS/Images/image00266.jpeg
IR, (B
BRAERE

TR

OEBPS/Images/image00310.jpeg
LGS

OEBPS/Images/image00265.jpeg

OEBPS/Images/image00309.jpeg

OEBPS/Images/image00308.jpeg
ERN-1
HRN-1

OEBP